Remote Sensing Extraction and Spatiotemporal Change Analysis of Time-Series Terraces in Complex Terrain on the Loess Plateau Based on a New Swin Transformer Dual-Branch Deformable Boundary Network (STDBNet)
Highlights
- The Swin Transformer dual-branch deformable boundary network (STDBNet) proposed in this study improves the recognition performance for irregular terraces and small-scale targets, achieving significantly higher extraction accuracy (OA = 95.26%, MIoU = 86.84%) compared to mainstream semantic segmentation models.
- We constructed an annual spatiotemporal dataset of terraced fields on the Loess Plateau, covering nine time periods from 2017 to 2025, which enables a systematic analysis of their spatiotemporal variation characteristics. The terraces are predominantly distributed in low-altitude areas with gentle slopes, exhibiting a significant spatial coupling relationship with terrain gradient.
- By integrating the Swin Transformer architecture, a dual-branch attention mechanism, and boundary-assisted supervision, the STDBNet model significantly enhances feature recognition accuracy for irregular terraces in complex terrain, offering a robust technical solution for terrace mapping and monitoring.
- The high-resolution annual terraced field time-series dataset, along with the spatiotemporal evolution characteristics it reveals, provides reliable data support and a scientific basis for studying soil and water conservation processes and optimizing ecological management on the Loess Plateau.
Abstract
1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Data Source and Preprocessing
2.2.1. Sentinel-2 Image Preprocessing
2.2.2. DEM Data and Land Cover Data
2.2.3. Construction of Training and Validation Datasets
2.3. Methods
2.3.1. STDBNet Model Design
2.3.2. Model Training
2.3.3. STDBNet Model Evaluation
2.4. Post-Processing
3. Results
3.1. Comparative Analysis of Model Performance
3.2. Correction and Refinement of Terrace Data Products
3.3. Analysis of Spatial Distribution Characteristics of Terraces on the LP
3.3.1. Spatial Distribution Patterns of Terraces on the LP
3.3.2. Characteristics of Terraced Field Distribution in Relation to Topographic Gradient
4. Discussion
4.1. Comparison with Existing Terrace Data Products
4.2. Model Performance Analysis
4.3. STDBNet Model Error Analysis and Future Research Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Wei, W.; Tong, B.; Liu, Y.; Liu, Z.; Chen, S.; Chen, D. Long-term terrace change and ecosystem service response in an inland mountain province of China. Catena 2024, 234, 107586. [Google Scholar] [CrossRef]
- Li, X.H.; Yang, J.; Zhao, C.Y.; Wang, B. Runoff and sediment from orchard terraces in southeastern China. Land Degrad. Dev. 2014, 25, 184–192. [Google Scholar] [CrossRef]
- Wen, X.; Zhen, L. Soil erosion control practices in the Chinese Loess Plateau: A systematic review. Environ. Dev. 2020, 34, 100493. [Google Scholar] [CrossRef]
- Wei, W.; Chen, D.; Wang, L.; Daryanto, S.; Chen, L.; Yu, Y.; Feng, T. Global synthesis of the classifications, distributions, benefits and issues of terracing. Earth-Sci. Rev. 2016, 159, 388–403. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, G.; Liu, Y.; Nie, X.; Li, Z.; Liu, J.; Zhu, D. Advantages and disadvantages of terracing: A comprehensive review. Int. Soil Water Conserv. Res. 2021, 9, 344–359. [Google Scholar] [CrossRef]
- Liu, X.; Xin, L.; Lu, Y. National scale assessment of the soil erosion and conservation function of terraces in China. Ecol. Indic. 2021, 129, 107940. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, M.; Zhao, X.; Wang, X.; Luo, Z. Methods for automatic identification and extraction of terraces from high spatial resolution satellite data (China-GF-1). Int. Soil Water Conserv. Res. 2017, 5, 17–25. [Google Scholar] [CrossRef]
- Guo, H.; Sun, L.; Yao, A.; Chen, Z.; Feng, H.; Wu, S.; Siddique, K.H. Abandoned terrace recognition based on deep learning and change detection on the Loess Plateau in China. Land Degrad. Dev. 2023, 34, 2349–2365. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, Y.; Mu, X.; Li, J.; Gao, P.; Zhao, G.; Chiew, F. Identifying terraces in the hilly and gully regions of the Loess Plateau in China. Land Degrad. Dev. 2019, 30, 2126–2138. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, J.; Liu, S.; Xie, Y. Terrace Extraction Method Based on Remote Sensing and a Novel Deep Learning Framework. Remote Sens. 2024, 16, 1649. [Google Scholar] [CrossRef]
- Agnoletti, M.; Cargnello, G.; Gardin, L.; Santoro, A.; Bazzoffi, P.; Sansone, L.; Belfiore, N. Traditional landscape and rural development: Comparative study in three terraced areas in northern, central and southern Italy to evaluate the efficacy of GAEC standard 4.4 of cross compliance. Ital. J. Agron. 2011, 6, 121–139. [Google Scholar] [CrossRef]
- Luo, L.; Li, F.; Dai, Z.; Yang, X.; Liu, W.; Fang, X. Terrace extraction based on remote sensing images and digital elevation model in the loess plateau, China. Earth Sci. Inform. 2020, 13, 433–446. [Google Scholar] [CrossRef]
- Kan, G.; Gong, J.; Wang, B.; Li, X.; Shi, J.; Ma, Y.; Zhang, J. A Refined Terrace Extraction Method Based on a Local Optimization Model Using GF-2 Images. Remote Sens. 2024, 17, 12. [Google Scholar] [CrossRef]
- Yu, M.; Rui, X.; Xie, W.; Xu, X.; Wei, W. Research on automatic identification method of terraces on the loess plateau based on deep transfer learning. Remote Sens. 2022, 14, 2446. [Google Scholar] [CrossRef]
- Ferrarese, F.; Pappalardo, S.E.; Cosner, A.; Brugnaro, S.; Alum, K.; Dal Pozzo, A.; De Marchi, M. Mapping agricultural terraces in Italy. Methodologies applied in the MAPTER project. In World Terraced Landscapes: History, Environment, Quality of Life; Springer International Publishing: Cham, Switzerland, 2018; pp. 179–194. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.; Wang, D.; An, L.; Li, R. Sloping farmland identification using hierarchical classification in the Xi-He region of China. Int. J. Remote Sens. 2013, 34, 545–562. [Google Scholar] [CrossRef]
- Dai, W.; Na, J.; Huang, N.; Hu, G.; Yang, X.; Tang, G.; Xiong, L.; Li, F. Integrated edge detection and terrain analysis for agricultural terrace delineation from remote sensing images. Int. J. Geogr. Inf. Sci. 2020, 34, 484–503. [Google Scholar] [CrossRef]
- Zhao, H.; Fang, X.; Ding, H.; Strobl, J.; Xiong, L.; Na, J.; Tang, G. Extraction of terraces on the Loess Plateau from high-resolution DEMs and imagery utilizing object-based image analysis. ISPRS Int. J. Geo-Inf. 2017, 6, 157. [Google Scholar] [CrossRef]
- Capolupo, A.; Kooistra, L.; Boccia, L. A novel approach for detecting agricultural terraced landscapes from historical and contemporaneous photogrammetric aerial photos. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 800–810. [Google Scholar] [CrossRef]
- Safonova, A.; Ghazaryan, G.; Stiller, S.; Main-Knorn, M.; Nendel, C.; Ryo, M. Ten deep learning techniques to address small data problems with remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103569. [Google Scholar] [CrossRef]
- Liu, Z.; Li, N.; Wang, L.; Zhu, J.; Qin, F. A multi-angle comprehensive solution based on deep learning to extract cultivated land information from high-resolution remote sensing images. Ecol. Indic. 2022, 141, 108961. [Google Scholar] [CrossRef]
- Yang, R.; Zhong, Y.; Su, Y. Multi-E2E: An end-to-end urban land-use mapping framework integrating high-resolution remote sensing images and multi-source geographical data. Remote Sens. Environ. 2025, 330, 114966. [Google Scholar] [CrossRef]
- Zhou, J.; Gu, X.; Gong, H.; Yang, X.; Sun, Q.; Guo, L.; Pan, Y. Intelligent classification of maize straw types from UAV remote sensing images using DenseNet201 deep transfer learning algorithm. Ecol. Indic. 2024, 166, 112331. [Google Scholar] [CrossRef]
- Ding, H.; Na, J.; Jiang, S.; Zhu, J.; Liu, K.; Fu, Y.; Li, F. Evaluation of three different machine learning methods for object-based artificial terrace mapping—A case study of the loess plateau, China. Remote Sens. 2021, 13, 1021. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, G.; Tang, B.; Wen, Q.; Tan, R.; Huang, Y. Regional scale terrace mapping in fragmented mountainous areas using multi-source remote sensing data and sample purification strategy. Sci. Total Environ. 2024, 925, 171366. [Google Scholar] [CrossRef]
- Li, Y.; Tian, F.; Zhang, M.; Zeng, H.; Ahmed, S.; Qin, X.; Wu, B. A 10-meter global terrace mapping using sentinel-2 imagery and topographic features with deep learning methods and cloud computing platform support. Int. J. Appl. Earth Obs. Geoinf. 2025, 139, 104528. [Google Scholar] [CrossRef]
- Wu, B.; Tian, F.; Nabil, M.; Bofana, J.; Lu, Y.; Elnashar, A.; Zhu, W. Mapping global maximum irrigation extent at 30m resolution using the irrigation performances under drought stress. Glob. Environ. Change 2023, 79, 102652. [Google Scholar] [CrossRef]
- Liu, R.; Yang, L.; Shi, Z.; Xing, M. Assessment of the applicability of multi-satellite precipitation products on the Loess Plateau over the past four decades. Int. J. Appl. Earth Obs. Geoinf. 2025, 141, 104634. [Google Scholar] [CrossRef]
- Fang, W.; Huang, S.; Huang, Q.; Huang, G.; Wang, H.; Leng, G.; Guo, Y. Probabilistic assessment of remote sensing-based terrestrial vegetation vulnerability to drought stress of the Loess Plateau in China. Remote Sens. Environ. 2019, 232, 111290. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, M.A.; Wang, Y. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agric. Ecosyst. Environ. 2011, 142, 184–194. [Google Scholar] [CrossRef]
- Qu, T.; Wang, H.; Li, X.; Luo, D.; Yang, Y.; Liu, J.; Zhang, Y. A fine crop classification model based on multitemporal Sentinel-2 images. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104172. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: Piscataway, NJ, USA; pp. 4704–4707. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Sun, Y.; Tian, Y.; Xu, Y. Problems of encoder-decoder frameworks for high-resolution remote sensing image segmentation: Structural stereotype and insufficient learning. Neurocomputing 2019, 330, 297–304. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, Y.; Wang, Z.; Li, Y.; Li, F.; Yang, F. Towards accurate mapping of loess waterworn gully by integrating google earth imagery and DEM using deep learning. Int. Soil Water Conserv. Res. 2024, 12, 13–28. [Google Scholar] [CrossRef]
- He, X.; Zhou, Y.; Zhao, J.; Zhang, D.; Yao, R.; Xue, Y. Swin transformer embedding UNet for remote sensing image semantic segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision 2021, Online, 11–17 October 2021; pp. 10012–10022. [Google Scholar] [CrossRef]
- Cao, B.; Yu, L.; Naipal, V.; Ciais, P.; Li, W.; Zhao, Y.; Gong, P. A 30-meter terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine. Earth Syst. Sci. Data Discuss. 2020, 13, 2437–2456. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Xin, L.; Song, H.; Wang, X. Mapping the terraces on the Loess Plateau based on a deep learning-based model at 1.89 m resolution. Sci. Data 2023, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Lalitha, V.; Latha, B.J.M.T.P. A review on remote sensing imagery augmentation using deep learning. Mater. Today Proc. 2022, 62, 4772–4778. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, B.; Feng, H.; Wu, S.; Yang, J.; Zou, Y.; Siddique, K.H. Ephemeral gully recognition and accuracy evaluation using deep learning in the hilly and gully region of the Loess Plateau in China. Int. Soil Water Conserv. Res. 2022, 10, 371–381. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Z.; Shi, S.; Hou, M.; Xu, L.; Zhang, X. A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet. Sci. Rep. 2023, 13, 7600. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, H.; Li, X. A multi-scale semantic feature fusion method for remote sensing crop classification. Comput. Electron. Agric. 2024, 224, 109185. [Google Scholar] [CrossRef]
- Zhao, F.; Xiong, L.Y.; Wang, C.; Wang, H.R.; Wei, H.; Tang, G.A. Terraces mapping by using deep learning approach from remote sensing images and digital elevation models. Trans. GIS 2021, 25, 2438–2454. [Google Scholar] [CrossRef]
- Yang, H. China’s soil plan needs strong support. Nature 2016, 536, 375. [Google Scholar] [CrossRef] [PubMed]










| Metric | Equation | |
|---|---|---|
| OA | (1) | |
| MIoU | (2) | |
| Precision | (3) | |
| Recall | (4) | |
| F1-Score | (5) |
| Feature | OA (%) | MIoU (%) |
|---|---|---|
| Sentinel-2 (R + G + B) | 88.98 | 82.56 |
| Sentinel-2 (R + G + B) + DEM + Slope | 91.32 | 84.07 |
| Models | OA | Recall | Precision | F1-Score | MIoU |
|---|---|---|---|---|---|
| STDBNet | 91.32 | 90.98 | 91.39 | 90.12 | 84.07 |
| U-Net | 84.89 | 84.89 | 82.38 | 83.58 | 74.36 |
| DeepLabV3+ | 83.59 | 80.14 | 83.54 | 82.90 | 73.65 |
| PSPNet | 78.70 | 78.76 | 77.36 | 78.04 | 68.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kan, G.; Xiao, J.; Liu, B.; Wang, B.; He, C.; Yang, H. Remote Sensing Extraction and Spatiotemporal Change Analysis of Time-Series Terraces in Complex Terrain on the Loess Plateau Based on a New Swin Transformer Dual-Branch Deformable Boundary Network (STDBNet). Remote Sens. 2026, 18, 85. https://doi.org/10.3390/rs18010085
Kan G, Xiao J, Liu B, Wang B, He C, Yang H. Remote Sensing Extraction and Spatiotemporal Change Analysis of Time-Series Terraces in Complex Terrain on the Loess Plateau Based on a New Swin Transformer Dual-Branch Deformable Boundary Network (STDBNet). Remote Sensing. 2026; 18(1):85. https://doi.org/10.3390/rs18010085
Chicago/Turabian StyleKan, Guobin, Jianhua Xiao, Benli Liu, Bao Wang, Chenchen He, and Hong Yang. 2026. "Remote Sensing Extraction and Spatiotemporal Change Analysis of Time-Series Terraces in Complex Terrain on the Loess Plateau Based on a New Swin Transformer Dual-Branch Deformable Boundary Network (STDBNet)" Remote Sensing 18, no. 1: 85. https://doi.org/10.3390/rs18010085
APA StyleKan, G., Xiao, J., Liu, B., Wang, B., He, C., & Yang, H. (2026). Remote Sensing Extraction and Spatiotemporal Change Analysis of Time-Series Terraces in Complex Terrain on the Loess Plateau Based on a New Swin Transformer Dual-Branch Deformable Boundary Network (STDBNet). Remote Sensing, 18(1), 85. https://doi.org/10.3390/rs18010085

