Abstract
Greenland, home to the largest ice sheet in the Northern Hemisphere, provides a crucial digital elevation model (DEM) for understanding polar climate evolution and valuable data for global climate change research. Based on ICESat-2 laser altimetry data collected from satellite observations over Greenland between November 2020 and November 2021, the Shandong University of Science and Technology 2021 DEM (SDUST2021DEM) with 500 m grid resolution at the epoch of May 2021 was constructed using a spatiotemporally fitted subgrid least squares method. The precision of the DEM was evaluated by comparison with National Aeronautics and Space Administration IceBridge data and supplemented by GNSS station measurements. The median difference between the DEM and IceBridge data was −0.33 m, the mean deviation −0.58 m, and the median absolute deviation 2.31 m. The accuracy of SDUST2021DEM exhibits a clear spatial pattern: it is higher in the central ice sheet than at the margins, decreases in regions with complex terrain, and remains more reliable in areas characterized by gentle slopes and flat terrain. Overall, the SDUST2021DEM demonstrates stable accuracy and can reliably produce high-precision DEMs for a specific temporal epoch.