Temporal and Spatial Upscaling with PlanetScope Data: Predicting Relative Canopy Dieback in the Piñon-Juniper Woodlands of Utah
Abstract
Highlights
- NDVI from PlanetScope imagery significantly explains the sitewide mean of relative canopy dieback in the study area, and this relationship remains robust when upscaled spatially or temporally, even from a modest ground-truthing dataset.
- Model outputs indicate that relative canopy dieback has remained stable, with little evidence of substantial regreening in the four years following the 2017–2018 drought.
- This approach provides a cost-effective, scalable framework for monitoring canopy dieback and regreening, facilitating forest health assessments without extensive field sampling.
- We also identified hotspots of severe canopy dieback in the piñon-juniper forests of Utah, which represent priority areas for further study and management intervention.
Abstract
1. Introduction
- 1.
- Whether the piñon-juniper (Pinus edulis and Juniperus osteosperma) forest stands of south-eastern Utah, USA, exhibit a relationship between recent, drought-induced canopy dieback and NDVI, and characterise any such relationship.
- 2.
- Whether controlling for the proportion of J. osteosperma enhances our ability to make NDVI-based predictions of relative canopy dieback.
- 3.
- Whether an NDVI time series can serve as a predictor for future defoliation events.
- 4.
- Whether the relationship between field-based canopy dieback data and NDVI can be upscaled to predict the extent of canopy dieback throughout the piñon-juniper forest ecosystem following the drought.
2. Materials and Methods
2.1. Study Area
2.2. Defoliation Data
2.3. PlanetScope Data
2.4. Data Preprocessing
- is the site
- is the mean NDVI value for the site
- is the number of valid (non-cloudy) pixels within site on a given date
- is the NDVI value of the pixel within the site
- This was calculated for each site, each time it was downloaded. The output of this process was a timeseries of the sitewide means of NDVIs. An explanation of our choice to use NDVI can be found in Table A1 of the Appendix A.
Site | AR1 | AR2 | AR3 | AR4 | CM1 | CM2 | CM3 | CM4 | MD1 | MD2 | MD3 | MD4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
№ of images | 3968 | 3974 | 4014 | 4020 | 4131 | 4127 | 4024 | 3933 | 3990 | 4099 | 4111 | 4137 |
№ after QC | 1979 | 1967 | 2005 | 2034 | 2029 | 2031 | 1972 | 1957 | 1986 | 2049 | 2054 | 2062 |
2.5. Data Analysis
2.5.1. Can a Relationship Between Relative Dieback and NDVI Be Found?
2.5.2. What Is the Optimal Way to Model This Relationship?
- represents the mean sitewide relative canopy dieback for both species combined (rescaled to a decimal value)
- represents sitewide mean NDVI
- represents the intercept
- represents the slope coefficient
- represents the residual error
- The extent of relative canopy dieback differs significantly between J. osteosperma and P. edulis [8]. This was reconfirmed statistically by us using Student’s t-test. As J. osteosperma experienced more severe canopy dieback than co-dominant P. edulis, it is possible that the proportion of J. osteosperma may confound NDVI-based predictions of relative canopy dieback. Therefore, we compared the performance of another beta regression model which includes the proportion of J. osteosperma in the sites as an additional interaction term. We assessed this model’s performance by identifying significant interaction terms (again using as our threshold) and through comparison to the performance of previous models. The model is described as follows:
- represents the mean sitewide relative canopy dieback for both species combined (rescaled to a decimal value)
- represents sitewide mean NDVI
- represents the proportion of J. osteosperma in the given site
- represents the intercept
- and represent the main effect coefficients
- represents the interaction coefficient
- represents the residual error
- Given the differences in relative canopy dieback between J. osteosperma and P. edulis, it might follow that an NDVI-based assessment of relative canopy dieback is more accurate when used to model only J. osteosperma or P. edulis, as each species reacted differently to drought. Modelling both in one model may be less effective as it combines two distinct biological effects into one output variable. Therefore, we reparametrized a beta regression model to predict the relative canopy dieback of only J. osteosperma, followed by P. edulis. The subsequent models were as follows:
- represents the mean sitewide relative canopy dieback for either J. osteosperma or P. edulis (rescaled to a decimal value)
- represents sitewide mean NDVI
- represents the proportion of J. osteosperma in the given site
- represents the intercept
- and represent the main effect coefficients
- represents the interaction coefficient
- represents the residual error
- The performance of these models was compared to ascertain whether NDVI can better model one species or the other.
2.5.3. Can NDVI Be Used to Predict Defoliation and/or Assess Regreening of the Canopy?
- represents the mean sitewide relative canopy dieback of J. osteosperma and P. edulis combined (rescaled to a decimal value)
- represents the mean of sitewide mean NDVIs for the time period being tested
- represents the proportion of J. osteosperma in the given site
- represents the intercept
- and represent the main effect coefficients
- represents the interaction coefficient
- represents the residual error
- Each model’s performance metrics, such as significance and pseudo-R2 value, were considered to determine whether the relationship between NDVI and prior canopy dieback remains biologically relevant as temporal distance from the ground-truthing date increases. These results were used to discuss the extent to which NDVI can be used to contextualise the current level of foliage at the study sites.
2.5.4. Can NDVI Predict Relative Canopy Dieback Elsewhere in the Ecosystem?
3. Results
3.1. The Relationship Between the Mean of Sitewide Relative Canopy Dieback and the Sitewide Mean of NDVI
3.2. The Optimal Modelling Approach
3.2.1. The Improved Efficacy of Beta Regressions Compared to Simple Linear Regressions
3.2.2. Species-Specific Disparity in the Mean of Relative Canopy Dieback Observed with Ground-Truthing Data
3.2.3. Species-Specific Disparity in the Mean of Relative Canopy Dieback Observed with NDVI
3.3. Species-Specific Relative Canopy Dieback Does Not Significantly Improve Model Performance
3.4. The Predictive Power of NDVI and an Assessment of Canopy Regreening
3.5. Our Forest-Wide Prediction of Relative Canopy Dieback
4. Discussion
- Whether NDVI can detect patterns of recent canopy dieback,
- How different modelling approaches can maximise inferential ability,
- Whether accounting for species composition enhances predictive accuracy, and
- Whether spatially/temporally upscaled predictions of relative canopy dieback are effective with these data.
- These questions are increasingly relevant as climate-driven disturbances become both more frequent and severe [6,7]. Our findings elucidated the potential of PlanetScope data as a tool to monitor the health of forests, particularly when constrained by ground-truthing data availability, sensor resolution, and the complex interactions between spectral signals and species-specific drought responses. The following sections sequentially discuss the implications of this research for each objective, contextualising the results in light of broader ecological monitoring efforts and highlighting key implications for future research and remote sensing applications in forest ecosystems.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Index | Pseudo-R2 | p value | Estimate (X) | Log-Likelihood |
---|---|---|---|---|
SAVI | 0.3160 | 0.00639 | −7.996 | 15.94 |
NDVI | 0.3154 | 0.00637 | −11.97 | 15.93 |
MSAVI2 | 0.3129 | 0.00652 | −9.97 | 15.91 |
EVI | 0.2799 | 0.0159 | −5.19 | 15.33 |
GNDVI | 0.2082 | 0.0232 | −9.99 | 14.78 |
References
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Yi, C.; Hendrey, G.; Niu, S.; McDowell, N.; Allen, C.D. Tree Mortality in a Warming World: Causes, Patterns, and Implications. Environ. Res. Lett. 2022, 17, 30201. [Google Scholar] [CrossRef]
- Mantova, M.; Herbette, S.; Cochard, H.; Torres-Ruiz, J.M. Hydraulic Failure and Tree Mortality: From Correlation to Causation. Trends Plant Sci. 2022, 27, 335–345. [Google Scholar] [CrossRef] [PubMed]
- McDowell, N.; Allen, C.D.; Anderson-Teixeira, K.; Brando, P.; Brienen, R.; Chambers, J.; Christoffersen, B.; Davies, S.; Doughty, C.; Duque, A.; et al. Drivers and Mechanisms of Tree Mortality in Moist Tropical Forests. New Phytol. 2018, 219, 851–869. [Google Scholar] [CrossRef] [PubMed]
- De Frenne, P.; Lenoir, J.; Luoto, M.; Scheffers, B.R.; Zellweger, F.; Aalto, J.; Ashcroft, M.B.; Christiansen, D.M.; Decocq, G.; De Pauw, K.; et al. Forest Microclimates and Climate Change: Importance, Drivers and Future Research Agenda. Glob. Change Biol. 2021, 27, 2279–2297. [Google Scholar] [CrossRef]
- Marvel, K.; Su, W.; Delgado, R.; Aarons, S.; Chatterjee, A.; Garcia, M.E.; Hausfather, Z.; Hayhoe, K.; Hence, D.A.; Jewett, E.B.; et al. Climate Trends. In Fifth National Climate Assessment; Crimmins, A.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2023. [Google Scholar]
- Kunkel, K.E.; Karl, T.R.; Squires, M.F.; Yin, X.; Stegall, S.T.; Easterling, D.R. Precipitation Extremes: Trends and Relationships with Average Precipitation and Precipitable Water in the Contiguous United States. J. Appl. Meteorol. Clim. 2020, 59, 125–142. [Google Scholar] [CrossRef]
- Kannenberg, S.A.; Driscoll, A.W.; Malesky, D.; Anderegg, W.R.L. Rapid and Surprising Dieback of Utah Juniper in the Southwestern USA Due to Acute Drought Stress. Ecol. Manag. 2021, 480, 118639. [Google Scholar] [CrossRef]
- Bréda, N.; Huc, R.; Granier, A.; Dreyer, E. Temperate Forest Trees and Stands under Severe Drought: A Review of Ecophysiological Responses, Adaptation Processes and Long-Term Consequences. Ann. For. Sci. 2006, 63, 625–644. [Google Scholar] [CrossRef]
- Groover, A.; Holbrook, N.M.; Polle, A.; Sala, A.; Medlyn, B.; Brodersen, C.; Pittermann, J.; Gersony, J.; Sokołowska, K.; Bogar, L.; et al. Tree Drought Physiology: Critical Research Questions and Strategies for Mitigating Climate Change Effects on Forests. New Phytol. 2025, 245, 1817–1832. [Google Scholar] [CrossRef]
- Brunner, I.; Herzog, C.; Dawes, M.A.; Arend, M.; Sperisen, C. How Tree Roots Respond to Drought. Front. Plant Sci. 2015, 6, 547. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Pettorelli, N.; Safi, K.; Turner, W. Satellite Remote Sensing, Biodiversity Research and Conservation of the Future. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130190. [Google Scholar] [CrossRef]
- Rocchini, D.; Marcantonio, M.; Ricotta, C. Measuring Rao’s Q Diversity Index from Remote Sensing: An Open Source Solution. Ecol. Indic. 2017, 72, 234–238. [Google Scholar] [CrossRef]
- Lambert, J.; Drenou, C.; Denux, J.P.; Balent, G.; Cheret, V. Monitoring Forest Decline through Remote Sensing Time Series Analysis. GISci. Remote Sens. 2013, 50, 437–457. [Google Scholar] [CrossRef]
- Klosterman, S.T.; Hufkens, K.; Gray, J.M.; Melaas, E.; Sonnentag, O.; Lavine, I.; Mitchell, L.; Norman, R.; Friedl, M.A.; Richardson, A.D. Evaluating Remote Sensing of Deciduous Forest Phenology at Multiple Spatial Scales Using PhenoCam Imagery. Biogeosciences 2014, 11, 4305–4320. [Google Scholar] [CrossRef]
- Karkauskaite, P.; Tagesson, T.; Fensholt, R. Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for Start-of-Season Trend Analysis of the Northern Hemisphere Boreal Zone. Remote Sens. 2017, 9, 485. [Google Scholar] [CrossRef]
- Berra, E.F.; Gaulton, R.; Barr, S. Assessing Spring Phenology of a Temperate Woodland: A Multiscale Comparison of Ground, Unmanned Aerial Vehicle and Landsat Satellite Observations. Remote Sens. Environ. 2019, 223, 229–242. [Google Scholar] [CrossRef]
- Bae, S.; Levick, S.R.; Heidrich, L.; Magdon, P.; Leutner, B.F.; Wöllauer, S.; Serebryanyk, A.; Nauss, T.; Krzystek, P.; Gossner, M.M.; et al. Radar Vision in the Mapping of Forest Biodiversity from Space. Nat. Commun. 2019, 10, 4757. [Google Scholar] [CrossRef]
- Shayle, E.; Marcantonio, M.; Labadessa, R.; Richiardi, C.; Vicario, S. Phenological Diversity Trends with Remote Sensing Datacubes. BioHackrXiv 2024, 1–10. [Google Scholar] [CrossRef]
- Schulte to Bühne, H.; Ross, B.; Sandom, C.J.; Pettorelli, N. Monitoring Rewilding from Space: The Knepp Estate as a Case Study. J. Environ. Manag. 2022, 312, 114867. [Google Scholar] [CrossRef]
- Skidmore, A.K.; Pettorelli, N.; Coops, N.C.; Geller, G.N.; Hansen, M.; Lucas, R.; Mücher, C.A.; O’Connor, B.; Paganini, M.; Pereira, H.M.; et al. Environmental Science: Agree on Biodiversity Metrics to Track from Space. Nature 2015, 523, 403–405. [Google Scholar] [CrossRef]
- Pádua, L.; Duarte, L.; Antão-Geraldes, A.M.; Sousa, J.J.; Castro, J.P. Spatio-Temporal Water Hyacinth Monitoring in the Lower Mondego (Portugal) Using Remote Sensing Data. Plants 2022, 11, 3465. [Google Scholar] [CrossRef]
- Hammond, W.M.; Williams, A.P.; Abatzoglou, J.T.; Adams, H.D.; Klein, T.; López, R.; Sáenz-Romero, C.; Hartmann, H.; Breshears, D.D.; Allen, C.D. Global Field Observations of Tree Die-off Reveal Hotter-Drought Fingerprint for Earth’s Forests. Nat. Commun. 2022, 13, 1761. [Google Scholar] [CrossRef] [PubMed]
- Mosig, C.; Vajna-jehle, J.; Mahecha, M.D.; Cheng, Y. Deadtrees. Earth-An Open-Access and Interactive Database for Centimeter-Scale Aerial Imagery to Uncover Global Tree Mortality Dynamics. bioRxiv 2024. [Google Scholar] [CrossRef]
- Taylor, S.L.; MacLean, D.A. Validation of Spruce Budworm Outbreak History Developed from Aerial Sketch Mapping of Defoliation in New Brunswick. North. J. Appl. For. 2008, 25, 139–145. [Google Scholar] [CrossRef]
- Zhang, Z.; Khanal, S.; Raudenbush, A.; Tilmon, K.; Stewart, C. Assessing the Efficacy of Machine Learning Techniques to Characterize Soybean Defoliation from Unmanned Aerial Vehicles. Comput. Electron. Agric. 2022, 193, 106682. [Google Scholar] [CrossRef]
- Adelabu, S.; Mutanga, O.; Adam, E. Evaluating the Impact of Red-Edge Band from Rapideye Image for Classifying Insect Defoliation Levels. ISPRS J. Photogramm. Remote Sens. 2014, 95, 34–41. [Google Scholar] [CrossRef]
- Hammill, K.A.; Bradstock, R.A. Remote Sensing of Fire Severity in the Blue Mountains: Influence of Vegetation Type and Inferring Fire Intensity. Int. J. Wildland Fire 2006, 15, 213–226. [Google Scholar] [CrossRef]
- Kantola, T.; Vastaranta, M.; Yu, X.; Lyytikainen-Saarenmaa, P.; Holopainen, M.; Talvitie, M.; Kaasalainen, S.; Solberg, S.; Hyyppa, J. Classification of Defoliated Trees Using Tree-Level Airborne Laser Scanning Data Combined with Aerial Images. Remote Sens. 2010, 2, 2665–2679. [Google Scholar] [CrossRef]
- Campbell, M.J.; Dennison, P.E.; Tune, J.W.; Kannenberg, S.A.; Kerr, K.L.; Codding, B.F.; Anderegg, W.R.L. A Multi-Sensor, Multi-Scale Approach to Mapping Tree Mortality in Woodland Ecosystems. Remote Sens. Environ. 2020, 245, 111853. [Google Scholar] [CrossRef]
- Kington, J.; Collinson, A. Scene Level Normalization and Harmonization of Planet Dove Imagery. Planet 2024. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Bivand, R.S.; Pebesma, E.; Gómez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Bivand, R.; Forner, K.; Ooms, J.; Pebesma, E.; Sumner, M.D. Package ‘Terra’; Maintainer: Vienna, Austria, 2022; Volume 384. [Google Scholar]
- Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Geissinger, E.A.; Khoo, C.L.L.; Richmond, I.C.; Faulkner, S.J.M.; Schneider, D.C. A Case for Beta Regression in the Natural Sciences. Ecosphere 2022, 13, e3940. [Google Scholar] [CrossRef]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Gräler, B. Random Forest as a Generic Framework for Predictive Modeling of Spatial and Spatio-Temporal Variables. PeerJ 2018, 6, e5518. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Redmond, M.D.; Urza, A.K.; Weisberg, P.J. Managing for Ecological Resilience of Pinyon–Juniper Ecosystems during an Era of Woodland Contraction. Ecosphere 2023, 14, e4505. [Google Scholar] [CrossRef]
- Zeuss, D.; Bald, L.; Gottwald, J.; Becker, M.; Bellafkir, H.; Bendix, J.; Bengel, P.T.; Beumer, L.T.; Brandl, R.; Brändle, M.; et al. Nature 4.0: A Networked Sensor System for Integrated Biodiversity Monitoring. Glob. Change Biol. 2024, 30, e17056. [Google Scholar] [CrossRef]
- González-Jaramillo, V.; Fries, A.; Bendix, J. AGB Estimation in a Tropical Mountain Forest (TMF) by Means of RGB and Multispectral Images Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 2019, 11, 1413. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Farrar, T.J. The Influence of Soil Type on the Relationships between NDVI, Rainfall, and Soil Moisture in Semiarid Botswana. I. NDVI Response to Rainfall. Remote Sens. Environ. 1994, 50, 107–120. [Google Scholar] [CrossRef]
- Negrón, J.F.; Wilson, J.L. Attributes Associated with Probability of Infestation by the Piñon Ips, Ips Confusus (Coleoptera: Scolytidae), in Piñon Pine, Pinus Edulis. West. N. Am. Nat. 2003, 63, 440–451. [Google Scholar]
- Clifford, M.J.; Cobb, N.S.; Buenemann, M. Long-Term Tree Cover Dynamics in a Pinyon-Juniper Woodland: Climate-Change-Type Drought Resets Successional Clock. Ecosystems 2011, 14, 949–962. [Google Scholar] [CrossRef]
- Gottfried, G.J. Regeneration of Pinyon. In Proceedings of the Proceedings-Pinyon-Juniper Conference; Everett, R.L., Ed.; Intermountain Research Station: Reno, NV, USA, 1987; pp. 249–254. [Google Scholar]
- Jiménez López, J.; Mulero-Pázmány, M. Drones for Conservation in Protected Areas: Present and Future. Drones 2019, 3, 10. [Google Scholar] [CrossRef]
- Neudert, R.; Ganzhorn, J.U.; Wätzold, F. Global Benefits and Local Costs—The Dilemma of Tropical Forest Conservation: A Review of the Situation in Madagascar. Environ. Conserv. 2017, 44, 82–96. [Google Scholar] [CrossRef]
- Laurance, W.F.; Alonso, A.; Lee, M.; Campbell, P. Challenges for Forest Conservation in Gabon, Central Africa. Futures 2006, 38, 454–470. [Google Scholar] [CrossRef]
- Poudyal, M.; Jones, J.P.G.; Rakotonarivo, O.S.; Hockley, N.; Gibbons, J.M.; Mandimbiniaina, R.; Rasoamanana, A.; Andrianantenaina, N.S.; Ramamonjisoa, B.S. Who Bears the Cost of Forest Conservation? PeerJ 2018, 6, e5106. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A Commentary Review on the Use of Normalized Difference Vegetation Index (NDVI) in the Era of Popular Remote Sensing. J. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
Site | Count of Junipers in Site | Junipers as a Proportion of the Site (%) | Mean of Junipers’ Canopy Dieback (%) | Count of Piñons in Site | Piñons as a Proportion of the Site (%) | Mean of Piñons’ Canopy Dieback (%) | Total Count of Trees in the Site | Mean of Sitewide Canopy Dieback (%) |
---|---|---|---|---|---|---|---|---|
May 2019 sampling round | ||||||||
AR1 | 57 | 58 | 8 | 42 | 42 | 4 | 99 | 6 |
AR2 | 22 | 88 | 18 | 3 | 12 | 0 | 25 | 16 |
AR3 | 46 | 67 | 73 | 23 | 33 | 28 | 69 | 58 |
AR4 | 19 | 83 | 31 | 4 | 17 | 1 | 23 | 26 |
CM1 | 39 | 91 | 54 | 4 | 9 | 54 | 43 | 54 |
CM2 | 22 | 88 | 58 | 3 | 12 | 36 | 25 | 55 |
CM3 | 34 | 65 | 4 | 18 | 35 | 0 | 52 | 3 |
CM4 | 9 | 26 | 3 | 26 | 74 | 1 | 35 | 2 |
MD1 | 36 | 77 | 8 | 11 | 23 | 2 | 47 | 7 |
MD2 | 25 | 48 | 13 | 27 | 52 | 3 | 52 | 8 |
MD3 | 35 | 78 | 18 | 10 | 22 | 18 | 45 | 18 |
MD4 | 52 | 83 | 32 | 11 | 17 | 1 | 63 | 27 |
Mean | 33 | 71 | 27 | 15 | 29 | 12 | 48 | 23 |
October 2019 sampling round | ||||||||
AR1 | 54 | 57 | 9 | 41 | 43 | 5 | 95 | 7 |
AR2 | 20 | 87 | 16 | 3 | 13 | 1 | 23 | 14 |
AR3 | 51 | 65 | 68 | 27 | 35 | 30 | 78 | 55 |
AR4 | 19 | 83 | 30 | 4 | 17 | 0 | 23 | 25 |
CM1 | 43 | 90 | 56 | 5 | 10 | 62 | 48 | 57 |
CM2 | 24 | 86 | 46 | 4 | 14 | 53 | 28 | 47 |
CM3 | 39 | 66 | 3 | 20 | 34 | 2 | 59 | 3 |
CM4 | 9 | 26 | 6 | 26 | 74 | 0 | 35 | 2 |
MD1 | 37 | 74 | 6 | 13 | 26 | 2 | 50 | 5 |
MD2 | 26 | 47 | 13 | 29 | 53 | 3 | 55 | 8 |
MD3 | 35 | 76 | 13 | 11 | 24 | 13 | 46 | 13 |
MD4 | 59 | 84 | 31 | 11 | 16 | 1 | 70 | 26 |
Mean | 35 | 70 | 25 | 16 | 30 | 14 | 51 | 22 |
Predictor | Estimate | Std. Error | z value | p value |
---|---|---|---|---|
Intercept | 0.267 | 5.651 | 0.047 | 0.962 |
Mean NDVI | −12.069 | 18.058 | −0.668 | 0.504 |
Junipers’ Proportion in Site | 0.006 | 0.075 | 0.077 | 0.939 |
Mean NDVI × Proportion of Junipers in the Site | 0.075 | 0.247 | 0.302 | 0.763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shayle, E.S.; Zeuss, D. Temporal and Spatial Upscaling with PlanetScope Data: Predicting Relative Canopy Dieback in the Piñon-Juniper Woodlands of Utah. Remote Sens. 2025, 17, 3323. https://doi.org/10.3390/rs17193323
Shayle ES, Zeuss D. Temporal and Spatial Upscaling with PlanetScope Data: Predicting Relative Canopy Dieback in the Piñon-Juniper Woodlands of Utah. Remote Sensing. 2025; 17(19):3323. https://doi.org/10.3390/rs17193323
Chicago/Turabian StyleShayle, Elliot S., and Dirk Zeuss. 2025. "Temporal and Spatial Upscaling with PlanetScope Data: Predicting Relative Canopy Dieback in the Piñon-Juniper Woodlands of Utah" Remote Sensing 17, no. 19: 3323. https://doi.org/10.3390/rs17193323
APA StyleShayle, E. S., & Zeuss, D. (2025). Temporal and Spatial Upscaling with PlanetScope Data: Predicting Relative Canopy Dieback in the Piñon-Juniper Woodlands of Utah. Remote Sensing, 17(19), 3323. https://doi.org/10.3390/rs17193323