Using UAVs to Monitor the Evolution of Restored Coastal Dunes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Restoration Strategy
2.3. Data Acquisition and Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
- Morris, R.L.; Konlechner, T.M.; Ghisalberti, M.; Swearer, S.E. From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defense. Glob. Chang. Biol. 2018, 24, 1827–1842. [Google Scholar] [CrossRef] [PubMed]
- Temmerman, S.; Kirwan, M.L. Building land with a rising sea. Science 2015, 349, 588–589. [Google Scholar] [CrossRef]
- Sierra, J.P.; Garcia-Leon, M.; Gracia, V.; Sanchez-Arcilla, A. Green measures for Mediterranean harbours under a changing climate. Proc. Inst. Civ. Eng. Marit. Eng. 2017, 170, 55–66. [Google Scholar] [CrossRef]
- Slinger, J.; Stive, M.; Luijendijk, A. Nature-based solutions for coastal engineering and management. Water 2021, 13, 976. [Google Scholar] [CrossRef]
- Silva, R.; Martínez, M.L.; Odériz, I.; Mendoza, E.; Feagin, R.A. Response of vegetated dune-beach systems to storm conditions. Coast. Eng. 2016, 109, 53–62. [Google Scholar] [CrossRef]
- Schoonees, T.; Gijón Mancheño, A.; Scheres, B.; Bouma, T.J.; Silva, R.; Schlurmann, T.; Schüttrumpf, H. Hard structures for coastal protection, towards gender designs. Estuar. Coasts 2019, 42, 1709–1729. [Google Scholar] [CrossRef]
- Gracia, V.; Sierra, J.P.; Caballero, A.; García-León, M.; Mösso, C. A methodological framework for selecting an optimal sediment source within a littoral cell. J. Environ. Manag. 2021, 296, 113207. [Google Scholar] [CrossRef]
- Moraes, R.P.L.; Reguero, B.G.; Mazarrasa, I.; Ricker, M.; Juanes, J.A. Nature-based solutions in coastal and estuarine áreas of Europe. Front. Environ. Sci. 2022, 10, 928. [Google Scholar] [CrossRef]
- Unguendoli, S.; Biolchi, L.G.; Aguzzi, M.; Pillai, U.P.A.; Alessandri, J.; Valentini, A. A modelling application of integrated nature based solutions (NBS) for coastal erosion and flooding mitigation in the Emilia-Romagna coastline (Northeast Italy). Sci. Total Environ. 2023, 867, 161357. [Google Scholar] [CrossRef]
- Berard, N.A.; Mulligan, R.P.; da Silva, A.M.F.; Dibajnia, M. Evaluation of XBeach performance for the erosion of a laboratory sand dune. Coast. Eng. 2017, 125, 70–80. [Google Scholar] [CrossRef]
- Schweiger, C.; Kaehler, C.; Koldrack, N.; Schuettrumpf, H. Spatial and temporal evaluation of storm-induced erosion modelling based on a two-dimensional field case including an artificial unvegetated research dune. Coast. Eng. 2020, 161, 103752. [Google Scholar] [CrossRef]
- Farrell, E.J.; Fernandez, I.D.; Smyth, T.; Li, B.; Swann, C. Contemporary research in coastal dunes and Aeolian processes. Earth Surf. Process. Landf. 2023, 49, 108–116. [Google Scholar] [CrossRef]
- Walker, I.J.; Hilgendorf, Z.; Gillies, J.A.; Turner, C.M.; Furtak-Cole, E.; Nikolich, G. Assessing performance of a “nature-based” foredune restoration project, Oceano Dunes, California, USA. Earth Surf. Process. Landf. 2023, 48, 143–162. [Google Scholar] [CrossRef]
- Harley, M.D.; Ciavola, P. xManaging local coastal inundation risk using real-time forecasts and artificial dune placements. Coast. Eng. 2023, 77, 77–90. [Google Scholar] [CrossRef]
- Dang, K.B.; Nguyen, T.T.; Ngo, H.H.; Burkhard, B.; Müller, F.; Dang, V.B.; Nguyen, H.; Ngo, V.L.; Pham, T.P.N. Integrated methods and scenarios for assessment of sand dunes ecosystem services. J. Environ. Manag. 2021, 289, 112485. [Google Scholar] [CrossRef]
- Peña-Alonso, C.; Gallego-Fernández, J.B.; Hernández-Calvento, L.; Hernández-Cordero, A.I.; Ariza, E. Assessing the geomorphological vulnerability of arid beach-dune systems. Sci. Total Environ. 2018, 635, 512–525. [Google Scholar] [CrossRef] [PubMed]
- EC. Council Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Union 1992, 206, 7–50. [Google Scholar]
- EC. Commission Staff Working Document: Fitness Check of the of the EU Nature Legislation (Birds and Habitats Directives) Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the Conservation of Wild Birds and Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora (SWD(2016) 472 Final); European Commission: Brussels, Belgium, 2016. [Google Scholar]
- FEMA. National Flood Insurance Program. Floodplain Management Requirements. A Study Guide and Desk Reference for Local Officials; Federal Emergency Management Agency: Washington, DC, USA, 2005. [Google Scholar]
- DELWP. Marine and Coastal Policy; Department of Environment, Land, Water and Planning, Victorian Government: Melbourne, VIC, Australia, 2020. [Google Scholar]
- Defeo, O.; McLachlan, A.; Schoeman, D.S.; Schlacher, T.A.; Dugan, J.; Jones, A.; Lastra, M.; Scapini, F. Threats to sandy beach ecosystems: A review. Estuar. Coast. Shelf Sci. 2009, 8, 1–12. [Google Scholar] [CrossRef]
- Matias, A.; Ferreira, O.; Mendes, I.; Dias, J.A.; Vila-Consejo, A. Artificial construction of dunes in the south of Portugal. J. Coast. Res. 2005, 21, 472–481. [Google Scholar] [CrossRef]
- Jackson, N.I.; Nordstrom, K.F. Aeolian sediment transport on a recovering storm-eroded foredune with sand fences. Earth Surf. Process. Landf. 2018, 43, 1310–1320. [Google Scholar] [CrossRef]
- Itzkin, M.; Moore, L.J.; Ruggiero, P.; Hacker, S.D. The effect of sand fencing on the morphology of natural dune systems. Geomorphology 2020, 352, 106995. [Google Scholar] [CrossRef]
- Arens, S.M.; Baas, A.C.W.; Van Boxel, J.H.; Kaleman, C. Influence of reed stem density on foredune development. Earth Surf. Process. Landf. 2001, 26, 1161–1176. [Google Scholar] [CrossRef]
- Ballesteros-Pelegrín, G.A.; García-Marín, R.; Ibarra-Marinas, D.; Sánchez-Balibrea, J.; Belmonte-Serrato, F.; Zamora-López, A.; Fernández-Ramos, J.F.; Martínez-Arnal, N. Actions for the conservation and restoration of the dunes and wetlands in the Salinas of San Pedro del Pinatar: LIFE-Salinas project (Murcia, southeast of Spain). Engineering 2022, 3, 387–399. [Google Scholar] [CrossRef]
- Cohn, N.; Brodie, K.; Conery, I.; Spore, N. Alongshore variable accretional and erosional coastal foredune dynamics at event to interannual timescales. Earth Space Sci. 2022, 9, e2022EA002447. [Google Scholar] [CrossRef]
- Garzon, J.L.; Costas, S.; Ferreira, O. Biotic and abiotic factors governing dune response to storm events. Earth Surf. Process. Landf. 2022, 47, 1013–1031. [Google Scholar] [CrossRef]
- Bryant, D.B.; Anderson Bryant, M.; Sharp, J.A.; Bell, G.L.; Moore, C. The response of vegetated dunes to wave attack. Coast. Eng. 2019, 152, 103506. [Google Scholar] [CrossRef]
- D’Alessandro, F.; Tomasicchio, G.R.; Francone, A.; Leone, E.; Frega, F.; Chiaia, G.; Saponieri, A.; Damiani, L. Coastal sand dune restoration with an eco-friendly technique. Aquat. Ecosyst. Health Manag. 2020, 23, 417–426. [Google Scholar] [CrossRef]
- Schreck Reis, C.; Antunes do Carmo, J.; Freitas, H. Learning with Nature: A sand dune system case study (Portugal). J. Coast. Res. 2008, 26, 1506–1515. [Google Scholar] [CrossRef]
- Antunes do Carmo, J.; Reis, C.S.; Freitas, H. Rehabilitation of a geotextile-reinforced sand dune. J. Coast. Res. 2009, SI56, 282–286. [Google Scholar]
- Almarshed, B.; Figlus, J.; Miller, J.; Verhagen, H.J. Innovative coastal risk reduction through hybrid design: Combining sand cover and structural defenses. J. Coast. Res. 2020, 36, 174–188. [Google Scholar] [CrossRef]
- Odériz, I.; Knöchelmann, N.; Silva, R.; Feagin, R.A.; Martínez, M.L.; Mendoza, E. Reinforcement of vegetated and unvegetated dunes by a rocky core: A viable alternative for dissipating waves and providing protection? Coast. Eng. 2020, 158, 103675. [Google Scholar] [CrossRef]
- Roig, F.X.; Rodríguez-Perea, A.; Martín-Prieto, J.A.; Pons, G.X. Soft management of beach dune systems as a tool for their sustainability. J. Coast. Res. 2009, SI56, 1284–1288. [Google Scholar]
- Provost, L.A.; Eisemann, E.R.; Anderson, C.P.; Waldron, M.C.B. Wrack placement to augment constructed dunes: A field investigation. Front. Built Environ. 2022, 8, 907608. [Google Scholar] [CrossRef]
- Pal, D.; Hogland, W. An overview and assessment of the existing technological options for management and resource recovery from beach wrack and dredged sediments: An environmental and economic perspective. J. Environ. Manag. 2022, 302, 113971. [Google Scholar] [CrossRef]
- De Falco, G.; Simeone, S.; Baroli, M. Management of beach-cast Posidonia oceanica seagrass on the island of Sardinia (Italy, Western Mediterranean). J. Coast. Res. 2008, 24, 69–74. [Google Scholar] [CrossRef]
- Simeone, S.; De Falco, G. Morphology and composition of beach-cast Posidonia oceanica litter on beaches with different exposures. Geomorphology 2012, 151–152, 224–233. [Google Scholar] [CrossRef]
- Simeone, S.; De Muro, S.; De Falco, G. Seagrass berm deposition on a Mediterranean embayed beach. Estuar. Coast. Shelf Sci. 2013, 135, 171–181. [Google Scholar] [CrossRef]
- Rotini, A.; Chiesa, S.; Manfra, L.; Borrello, P.; Piermarini, R.; Silvestri, C.; Cappucci, S.; Parlagreco, L.; Devoti, S.; Pisapia, M.; et al. Effectiveness of the “Ecological Beach” model: Beneficial management of Posidonia beach casts and banquette. Water 2020, 12, 3238. [Google Scholar] [CrossRef]
- Ruju, A.; Buosi, C.; Coco, G.; Porta, M.; Trogu, D.; Ibba, A.; De Muro, S. Ecosystem services of reed and seagrass debris on a urban Mediterranean beach (Poetto, Italy). Estuar. Coast. Shelf Sci. 2022, 271, 107862. [Google Scholar] [CrossRef]
- Nordstrom, K.F.; Jackson, N.L.; Korotky, K.H. Aeolian sediment transport across beach wrack. J. Coast. Res. 2011, SI59, 211–217. [Google Scholar] [CrossRef]
- Del Vecchio, S.; Jucket, T.; Carboni, M.; Acosta, A.T.R. Linking plant communities on land and at sea: The effects of Posidonia oceanica wrack on the structure of dune vegetation. Estuar. Coast. Shelf Sci. 2017, 184, 30–36. [Google Scholar] [CrossRef]
- Alcoverro, T.; Manzanera, M.; Romero, J. Nutrient mass balance of the seagrass Posidonia oceanica: The importance of nutrient retranslocation. Mar. Ecol. Prog. Ser. 2000, 194, 13–21. [Google Scholar] [CrossRef]
- Cardona, L.; Garcia, M. Beach cast seagrass material fertilizes the foredune vegetation of Mediterranean coastal dunes. Acta Oecol. 2008, 34, 97–103. [Google Scholar] [CrossRef]
- Del Vecchio, S.; Marbà, N.; Acosta, A.; Vignolo, C.; Traveset, A. Effects of Posidonia oceanica beach-cast on germination, growth and nutrient uptake of coastal dune plants. PLoS ONE 2013, 8, e70607. [Google Scholar] [CrossRef] [PubMed]
- Duarte, C.M. How can beaches be managed with respect to seagrass litter? In European Seagrasses: An Introduction to Monitoring and Management; Borum, J., Duarte, C.M., Krause-Jansen, D., Greeve, T.M., Eds.; EU Project Monitoring and Managing of European Seagrasses: Copenhagen, Denmark, 2004; pp. 83–84. [Google Scholar]
- Rovira, A.; Ibáñez, C. Sediment management options for the lower Ebro River and its delta. J. Soils Sedim. 2007, 7, 285–295. [Google Scholar] [CrossRef]
- Mösso, C.; Sierra, J.P.; Gracia, V.; Mestres, M.; Rodríguez, A. Short-term morphodynamic changes in a fetch limited beach at the Ebro delta (Spain), under low wave-energy conditions. J. Coast. Res. 2011, SI64, 185–189. [Google Scholar]
- Grases, A.; Gracia, V.; García-León, M.; Lin-Ye, J.; Sierra, J.P. Coastal flooding and erosion under a changing climate: Implications at a low-lying coast (Ebro Delta). Water 2020, 12, 346. [Google Scholar] [CrossRef]
- Bolaños, R.; Jordà, G.; Cateura, J.; López, J.; Puigdefàbregas, J.; Gómez, J.; Espino, M. The XIOM: 20 years of regional coastal observatory in the Spanish Catalan coast. J. Mar. Syst. 2009, 77, 237–260. [Google Scholar] [CrossRef]
- Sánchez-Arcilla, A.; González-Marco, D.; Doorn, N.; Kortenhaus, A. Extreme values for coastal, estuarine and riverine environments. J. Hydraul. Res. 2008, 46 (Suppl. S2), 183–190. [Google Scholar] [CrossRef]
- CIIRC. Estat de la Zona Costanera a Catalunya; Centre Internacional d’Investigació dels Recursos Costaners, Generalitat de Catalunya: Barcelona, Spain, 2008. [Google Scholar]
- Medvedev, A.; Telnova, N.; Alekseenko, N.; Koshkarev, A.; Kuznetchenko, P.; Asmaryan, S.; Narikov, A. UAV-Derived Data Application for Environmental Monitoring of the Coastal Area of Lake Sevan, Armenia with a Changing Water Level. Remote Sens. 2020, 12, 3821. [Google Scholar] [CrossRef]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar]
- Alvarez, L.V.; Moreno, H.A.; Segales, A.R.; Pham, T.G.; Pillar-Little, E.A.; Chilson, P.B. Merging Unmanned Aerial Systems (UAS) Imagery and Echo Soundings with an Adaptive Sampling Technique for Bathymetric Surveys. Remote Sens. 2018, 10, 1362. [Google Scholar]
- Gonçalves, J.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Doukari, M.; Batsaris, M.; Papakonstantinou, A.; Topouzelis, K. A Protocol for Aerial Survey in Coastal Areas using UAS. Remote Sens. 2019, 11, 1913. [Google Scholar]
- Lin, Y.C.; Cheng, Y.T.; Zhou, T.; Ravi, R.; Hasheminasab, S.M.; Flatt, J.E.; Troy, C.; Habib, A. Evaluation of UAV LiDAR for Mapping Coastal Environments. Remote Sens. 2019, 11, 2893. [Google Scholar] [CrossRef]
- Tmušić, G.; Manfreda, S.; Aasen, H.; James, M.R.; Gonçalves, G.; Ben-Dor, E.; Brook, A.; Polinova, M.; Arranz, J.J.; Mészáros, J.; et al. Current Practices in UAS-based Environmental Monitoring. Remote Sens. 2020, 12, 1001. [Google Scholar] [CrossRef]
- Zanutta, A.; Lambertini, A.; Vittuari, L. UAV photogrammetry and ground surveys as a mapping tool for quickly monitoring shoreline and beach changes. J. Mar. Sci. Eng. 2020, 8, 52. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Duffy, J.P.; Shutler, J.D.; Witt, M.J.; DeBell, L.; Anderson, K. Tracking Fine-Scale Structural Changes in Coastal Dune Morphology Using Kite Aerial Photography and Uncertainty-Assessed Structure-from-Motion Photogrammetry. Remote Sens. 2018, 10, 1494. [Google Scholar] [CrossRef]
- Moloney, J.G.; Hilton, M.J.; Sirguey, P.; Simons-Smith, T. Coastal dune surveying using a low-cost remotely piloted aerial system (RPAS). J. Coast. Res. 2018, 345, 1244–1255. [Google Scholar] [CrossRef]
- Laporte-Fauret, Q.; Marieu, V.; Castelle, B.; Michalet, R.; Bujan, S.; Rosebery, D. Lowcost UAV for high-resolution and large-scale coastal dune change monitoring using photogrammetry. J. Mar. Sci. Eng. 2019, 7, 63. [Google Scholar] [CrossRef]
- Shahbazi, M.; Sohn, G.; Théau, J.; Menard, P. Development and evaluation of a UAV-photogrammetry system for precise 3D environmental modeling. Sensors 2015, 15, 27493–27524. [Google Scholar] [CrossRef]
- Balaguer, L.; Escudero, A.; Martín-Duque, J.F.; Mola, I.; Aronson, J. The historical reference in restauration ecology: Re-defining a cornerstone concept. Biol. Conserv. 2014, 176, 12–20. [Google Scholar] [CrossRef]
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallet, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International principles and standards for the practice of ecological restauration. Second edition. Restor. Ecol. 2019, 27, S1–S46. [Google Scholar] [CrossRef]
- Pagán, J.L.; Bañón, L.; López, I.; Bañón, C.; Aragonés, L. Monitoring the dune-beach system of Guardamar del Segura (Spain) using UAV, SfM and GIS techniques. Sci. Total Environ. 2019, 687, 1034–1045. [Google Scholar] [CrossRef]
- Lavoie, C.; Jimenez, J.; Canals, M.; Lastras, G.; de Mol, G.; Amblas, D.; Liquete, C.; de Batist, M.; Clarke, J.E.H. Influence on present-day coastal dynamics and evolution of a relict subaqueous delta lobe: Sol de Riu lobe, Ebro Delta. Cont. Shelf Res. 2014, 74, 94–104. [Google Scholar] [CrossRef]
- Crapoulet, A.; Héquette, A.; Marin, D.; Levoy, F.; Patrice, B. Variations in the response of the dune coast of northern France to major storms as a function of available beach sediment volume. Earth Surf. Process. Landf. 2017, 27, 1603–1622. [Google Scholar] [CrossRef]
- Pye, K.; Blott, S.J. Geomorphology assessment of beach and dune erosion and accretion using LIDAR: Impact of the stormy 2013–14 winter and longer term trends on the Sefton Coast, UK. Geomorphology 2016, 266, 146–167. [Google Scholar] [CrossRef]
- Fairley, I.; Horrillo-Caraballo, J.; Masters, I.; Karunarathna, H.; Reeve, D.E. Spatial variation in coastal dune evolution in a high tidal range environment. Remote Sens. 2020, 12, 3689. [Google Scholar] [CrossRef]
- Hilderbrand, R.H.; Watts, A.C.; Randle, A.M. The myths of restoration ecology. Ecol. Soc. 2005, 10, 19. [Google Scholar] [CrossRef]
- Lammers, C.; Reijers, V.C.; van der Heide, T. Scale-dependent interactions in coastal biogeomorphic landscapes: Pioneer both inhibits and facilitates primary foredune builder across spatial scales. Geomorphology 2024, 46, 109486. [Google Scholar] [CrossRef]
- Rodwell, J.S. (Ed.) British Plant Communities: Volume 5: Maritime Communities and Vegetation of Open Habitats; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Gao, J.; Kennedy, D.M.; McSweeney, S. Patterns of vegetation expansion during dune stabilization at the decadal scale. Earth Surf. Process. Landf. 2023, 48, 3059–3073. [Google Scholar] [CrossRef]
- Bush, N.; Bush, E.; Sokolova, Y.; Bush, N.; Blanchard, P. Utilizing the physiological mechanisms of coastal plants for vegetative restoration of barrier islands. Ocean Coast. Manag. 2018, 161, 222–227. [Google Scholar] [CrossRef]
- Oldham, C.; McMahon, K.; Brown, E.J.; Bosserelle, C.; Lavery, P.S. A preliminary exploration of the physical properties of seagrass wrack that affect its offshore transport, deposition, and retention on a beach. Limnol. Oceanogr. 2014, 4, 120–135. [Google Scholar] [CrossRef]
- Mazarrasa, I.; Marbá, N.; Garcia-Orellana, J.; Masqué, P.; Arias-Ortiz, A.; Duarte, C.M. Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of Posidonia oceanica meadows. Limnol. Oceanogr. 2017, 62, 1436–1450. [Google Scholar] [CrossRef]
- Fabbri, S.; Grottoli, E.; Armaroli, C.; Ciavola, P. Using high-spatial resolution UAV-derived data to evaluate vegetation and geomorphological changes on a dune field involved in a restoration endeavor. Remote Sens. 2021, 13, 1987. [Google Scholar] [CrossRef]
- Pinton, D.; Canestrelli, A.; Moon, R.; Wilkinson, B. Estimating ground elevation in coastal dunes from high-resolution UAV-LIDAR point clouds and photogrammetry. Remote Sens. 2023, 15, 226. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gracia, V.; Dietrich, M.M.; Sierra, J.P.; Valero, F.; Espanya, A.; Mösso, C.; Sánchez-Arcilla, A. Using UAVs to Monitor the Evolution of Restored Coastal Dunes. Remote Sens. 2025, 17, 3263. https://doi.org/10.3390/rs17193263
Gracia V, Dietrich MM, Sierra JP, Valero F, Espanya A, Mösso C, Sánchez-Arcilla A. Using UAVs to Monitor the Evolution of Restored Coastal Dunes. Remote Sensing. 2025; 17(19):3263. https://doi.org/10.3390/rs17193263
Chicago/Turabian StyleGracia, Vicente, Margaret M. Dietrich, Joan Pau Sierra, Ferran Valero, Antoni Espanya, César Mösso, and Agustín Sánchez-Arcilla. 2025. "Using UAVs to Monitor the Evolution of Restored Coastal Dunes" Remote Sensing 17, no. 19: 3263. https://doi.org/10.3390/rs17193263
APA StyleGracia, V., Dietrich, M. M., Sierra, J. P., Valero, F., Espanya, A., Mösso, C., & Sánchez-Arcilla, A. (2025). Using UAVs to Monitor the Evolution of Restored Coastal Dunes. Remote Sensing, 17(19), 3263. https://doi.org/10.3390/rs17193263