Kolmogorov–Arnold Networks for Interpretable Crop Yield Prediction Across the U.S. Corn Belt
Abstract
1. Introduction
2. Materials
2.1. Study Area
2.2. Cropland Data Layer and Yield Statistics
2.3. Earth Observation Datasets
2.3.1. Satellite Data
2.3.2. Soil Texture
2.3.3. Topographic Data
2.3.4. Climate Data
2.4. Data Exploratory Analysis and Preprocessing
3. Methods
3.1. Multi-Layer Perceptron
3.2. Kolmogorov–Arnold Networks
3.3. Implementation of Yield Estimation Framework
3.4. Accuracy Assessment
4. Results
4.1. Model Parameter Optimization
4.2. End-of-Season Yield Prediction
4.3. In-Season Yield Prediction
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDL | Crop Data Layer |
CONUS | Continental United States |
DEM | Digital Elevation Model |
DL | Deep Learning |
EO | Earth Observation |
EVI | Enhanced Vegetation Index |
GEE | Google Earth Engine |
H | Height |
KANs | Kolmogorov–Arnold Networks |
KNN | K-Nearest Neighbors |
LAI | Leaf Area Index |
LASSO | Least Absolute Shrinkage and Selection Operator |
LST | Land Surface Temperature |
LSTM | Long Short-Term Memory |
MAE | Mean Absolute Error |
ML | Machine Learning |
MLP | Multi-Layer Perceptron |
MODIS | Moderate-Resolution Imaging Spectroradiometer |
NDWI | Normalized Difference Water Index |
P | Precipitation |
RFR | Random Forest Regression |
RMSE | Root Mean Square Error |
S | Slope |
SRTM | Shuttle Radar Topography Mission |
SVR | Support Vector Regression |
U.S. | United States |
XAI | Explainable Artificial Intelligence |
References
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Li, S.; Chen, J.; Yu, H.; Yang, T.; Wang, C.; Huang, S.; Chen, H.; Ao, X. Impacts of Global Climate Change on Agricultural Production: A Comprehensive Review. Agronomy 2024, 14, 1360. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Cline, S.A. Global Food Security: Challenges and Policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef] [PubMed]
- Meroni, M.; Waldner, F.; Seguini, L.; Kerdiles, H.; Rembold, F. Yield forecasting with machine learning and small data: What gains for grains? Agric. For. Meteorol. 2021, 308–309, 108555. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Z.; Cao, J.; Zhang, L.; Zhang, J.; Han, J.; Zhuang, H.; Cheng, F.; Tao, F. Accurately mapping global wheat production system using deep learning algorithms. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102823. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Y.; Ata-Ul-Karim, S.T.; Ge, Q.; Li, X.; Xiao, J. Integrating climate and satellite remote sensing data for predicting county-level wheat yield in China using machine learning methods. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102861. [Google Scholar] [CrossRef]
- Khan, S.N.; Khan, A.N.; Tariq, A.; Lu, L.; Malik, N.A.; Umair, M.; Hatamleh, W.A.; Zawaideh, F.H. County-level corn yield prediction using supervised machine learning. Eur. J. Remote Sens. 2023, 56, 2253985. [Google Scholar] [CrossRef]
- Lu, J.; Fu, H.; Tang, X.; Liu, Z.; Huang, J.; Zou, W.; Chen, H.; Sun, Y.; Ning, X.; Li, J. GOA-optimized deep learning for soybean yield estimation using multi-source remote sensing data. Sci. Rep. 2024, 14, 7097. [Google Scholar] [CrossRef] [PubMed]
- Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A Systematic Literature Review on Crop Yield Prediction with Deep Learning and Remote Sensing. Remote Sens. 2022, 14, 1990. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Tao, F.; Zhang, L.; Luo, Y.; Han, J.; Li, Z. Identifying the Contributions of Multi-Source Data for Winter Wheat Yield Prediction in China. Remote Sens. 2020, 12, 750. [Google Scholar] [CrossRef]
- Peng, B.; Guan, K.; Pan, M.; Li, Y. Benefits of Seasonal Climate Prediction and Satellite Data for Forecasting U.S. Maize Yield. Geophys. Res. Lett. 2018, 45, 9662–9671. [Google Scholar] [CrossRef]
- Timsina, J.; Humphreys, E. Performance of CERES-Rice and CERES-Wheat models in rice–wheat systems: A review. Agric. Syst. 2006, 90, 5–31. [Google Scholar] [CrossRef]
- Johnson, D.M. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 2014, 141, 116–128. [Google Scholar] [CrossRef]
- Khaki, S.; Wang, L. Crop Yield Prediction Using Deep Neural Networks. Front. Plant Sci. 2019, 10, 621. [Google Scholar] [CrossRef] [PubMed]
- Peichl, M.; Thober, S.; Samaniego, L.; Hansjürgens, B.; Marx, A. Machine-learning methods to assess the effects of a non-linear damage spectrum taking into account soil moisture on winter wheat yields in Germany. Hydrol. Earth Syst. Sci. 2021, 25, 6523–6545. [Google Scholar] [CrossRef]
- Khan, S.N.; Li, D.; Maimaitijiang, M. A Geographically Weighted Random Forest Approach to Predict Corn Yield in the US Corn Belt. Remote Sens. 2022, 14, 2843. [Google Scholar] [CrossRef]
- Ebrahimy, H.; Wang, Y.; Zhang, Z. Utilization of synthetic minority oversampling technique for improving potato yield prediction using remote sensing data and machine learning algorithms with small sample size of yield data. ISPRS J. Photogramm. Remote Sens. 2023, 201, 12–25. [Google Scholar] [CrossRef]
- Celik, M.F.; Isik, M.S.; Taskin, G.; Erten, E.; Camps-Valls, G. Explainable Artificial Intelligence for Cotton Yield Prediction with Multisource Data. IEEE Geosci. Remote Sens. Lett. 2023, 20, 8500905. [Google Scholar] [CrossRef]
- Mateo-Sanchis, A.; Piles, M.; Muñoz-Marí, J.; Adsuara, J.E.; Pérez-Suay, A.; Camps-Valls, G. Synergistic integration of optical and microwave satellite data for crop yield estimation. Remote Sens. Environ. 2019, 234, 111460. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Ferrer, L.; Piles, M.; Camps-Valls, G. Crop Yield Estimation and Interpretability with Gaussian Processes. IEEE Geosci. Remote Sens. Lett. 2021, 18, 2043–2047. [Google Scholar] [CrossRef]
- Jhajharia, K.; Mathur, P. Prediction of crop yield using satellite vegetation indices combined with machine learning approaches. Adv. Space Res. 2023, 72, 3998–4007. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, H.; Zhang, M.; Wu, B.; Zhao, Y.; Yao, X.; Cheng, T.; Qin, X.; Wu, F. A county-level soybean yield prediction framework coupled with XGBoost and multidimensional feature engineering. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103269. [Google Scholar] [CrossRef]
- Mateo-Sanchis, A.; Adsuara, J.E.; Piles, M.; Munoz-Marí, J.; Perez-Suay, A.; Camps-Valls, G. Interpretable Long Short-Term Memory Networks for Crop Yield Estimation. IEEE Geosci. Remote Sens. Lett. 2023, 20, 2501105. [Google Scholar] [CrossRef]
- Khan, S.N.; Li, D.; Maimaitijiang, M. Using gross primary production data and deep transfer learning for crop yield prediction in the US Corn Belt. Int. J. Appl. Earth Obs. Geoinf. 2024, 131, 103965. [Google Scholar] [CrossRef]
- Terliksiz, A.S.; Altilar, D.T. Impact of large kernel size on yield prediction: A case study of corn yield prediction with SEDLA in the U.S. Corn Belt. Environ. Res. Commun. 2024, 6, 025011. [Google Scholar] [CrossRef]
- Sakamoto, T. Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm. ISPRS J. Photogramm. Remote Sens. 2020, 160, 208–228. [Google Scholar] [CrossRef]
- Sartore, L.; Rosales, A.N.; Johnson, D.M.; Spiegelman, C.H. Assessing machine leaning algorithms on crop yield forecasts using functional covariates derived from remotely sensed data. Comput. Electron. Agric. 2022, 194, 106704. [Google Scholar] [CrossRef]
- Paudel, D.; de Wit, A.; Boogaard, H.; Marcos, D.; Osinga, S.; Athanasiadis, I.N. Interpretability of deep learning models for crop yield forecasting. Comput. Electron. Agric. 2023, 206, 107663. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljačić, M.; Hou, T.Y.; Tegmark, M. KAN: Kolmogorov-Arnold Networks. arXiv 2024, arXiv:2404.19756. [Google Scholar] [PubMed]
- Teymoor Seydi, S.; Sadegh, M.; Chanussot, J. Kolmogorov–Arnold Network for Hyperspectral Change Detection. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5505515. [Google Scholar] [CrossRef]
- Jamali, A.; Roy, S.K.; Hong, D.; Lu, B.; Ghamisi, P. How to Learn More? Exploring Kolmogorov–Arnold Networks for Hyperspectral Image Classification. Remote Sens. 2024, 16, 4015. [Google Scholar] [CrossRef]
- USDA. United States Department of Agriculture National Agricultural Statistics Service. Available online: https://quickstats.nass.usda.gov/ (accessed on 12 January 2023).
- Celik, M.F.; Isik, M.S.; Yuzugullu, O.; Fajraoui, N.; Erten, E. Soil Moisture Prediction from Remote Sensing Images Coupled with Climate, Soil Texture and Topography via Deep Learning. Remote Sens. 2022, 14, 5584. [Google Scholar] [CrossRef]
- Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4. CGIAR-CSI SRTM 90m Database. 2008. Available online: https://research.utwente.nl/en/publications/hole-filled-srtm-for-the-globe-version-4-data-grid (accessed on 7 April 2025).
- Thornton, M.; Shrestha, R.; Wei, Y.; Thornton, P.; Kao, S.C. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 4. 2020. Available online: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1840 (accessed on 7 April 2025).
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2019. [Google Scholar]
- Raschka, S.; Mirjalili, V. Python MachineLearning: Machine Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow 2; Packt Publishing Ltd.: Birmingham, UK, 2019. [Google Scholar]
- Murtagh, F. Multilayer perceptrons for classification and regression. Neurocomputing 1991, 2, 183–197. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks and Learning Machines, 3/E; Pearson Education: Tamil Nadu, India, 2009. [Google Scholar]
- Vaca-Rubio, C.J.; Blanco, L.; Pereira, R.; Caus, M. Kolmogorov-Arnold Networks (KANs) for Time Series Analysis. arxiv 2024, arXiv:2405.08790. [Google Scholar]
- Liu, Z.; Ma, P.; Wang, Y.; Matusik, W.; Tegmark, M. Kan 2.0: Kolmogorov-arnold networks meet science. arXiv 2024, arXiv:2408.10205. [Google Scholar]
- Genet, R.; Inzirillo, H. TKAN: Temporal Kolmogorov-Arnold Networks. arxiv 2024, arXiv:2405.07344. [Google Scholar] [CrossRef]
- Xu, K.; Chen, L.; Wang, S. Kolmogorov-Arnold Networks for Time Series: Bridging Predictive Power and Interpretability. arxiv 2024, arXiv:2406.02496. [Google Scholar]
- Sun, J.; Lai, Z.; Di, L.; Sun, Z.; Tao, J.; Shen, Y. Multilevel Deep Learning Network for County-Level Corn Yield Estimation in the U.S. Corn Belt. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5048–5060. [Google Scholar] [CrossRef]
- Pede, T.; Mountrakis, G.; Shaw, S.B. Improving corn yield prediction across the US Corn Belt by replacing air temperature with daily MODIS land surface temperature. Agric. For. Meteorol. 2019, 276–277, 107615. [Google Scholar] [CrossRef]
- Huang, H.; Huang, J.; Feng, Q.; Liu, J.; Li, X.; Wang, X.; Niu, Q. Developing a Dual-Stream Deep-Learning Neural Network Model for Improving County-Level Winter Wheat Yield Estimates in China. Remote Sens. 2022, 14, 5280. [Google Scholar] [CrossRef]
- Lischeid, G.; Webber, H.; Sommer, M.; Nendel, C.; Ewert, F. Machine learning in crop yield modelling: A powerful tool, but no surrogate for science. Agric. For. Meteorol. 2022, 312, 108698. [Google Scholar] [CrossRef]
- Teng, J.; Hou, R.; Dungait, J.A.J.; Zhou, G.; Kuzyakov, Y.; Zhang, J.; Tian, J.; Cui, Z.; Zhang, F.; Delgado-Baquerizo, M. Conservation agriculture improves soil health and sustains crop yields after long-term warming. Nat. Commun. 2024, 15, 8785. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; He, X.; Cheng, X.; Li, P.; Luo, H.; Zhang, L.; Tian, Z. Crop yield prediction from multi-spectral, multi-temporal remotely sensed imagery using recurrent 3D convolutional neural networks. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102436. [Google Scholar] [CrossRef]
- Kira, O.; Wen, J.; Han, J.; McDonald, A.J.; Barrett, C.B.; Ortiz-Bobea, A.; Liu, Y.; You, L.; Mueller, N.D.; Sun, Y. A scalable crop yield estimation framework based on remote sensing of solar-induced chlorophyll fluorescence (SIF). Environ. Res. Lett. 2024, 19, 044071. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Z.; Kang, Y.; Özdoğan, M. Corn yield prediction and uncertainty analysis based on remotely sensed variables using a Bayesian neural network approach. Remote Sens. Environ. 2021, 259, 112408. [Google Scholar] [CrossRef]
Data Source | Features | Spatial Resolution | Temporal Resolution |
---|---|---|---|
MODIS 1 | EVI & NDWI | 250 m | Daily |
LAI | 500 m | 4 days | |
LST | 1 km | Daily | |
Daymet V4 2 | P, Tmax & Tmin | 1 km | Daily |
SoilGrids | Sand, Silt, Clay, Bulk density | 250 m | N/A |
SRTM 3 | H & S | 30 m | N/A |
USDA 4 | CDL | 30 m | Yearly |
Yield | County-level | Yearly |
Data | Unit | Min. | Max. | Mean ± Std. |
---|---|---|---|---|
P | mm | 0.00 | 413.05 | 80.55 ± 50.24 |
Tmax | °C | 0.96 | 36.71 | 23.47 ± 6.06 |
Tmin | °C | −9.73 | 22.72 | 10.85 ± 6.17 |
EVI | - | 0.013 | 0.684 | 0.324 ± 0.148 |
NDWI | - | −0.68 | 0.038 | −0.353 ± 0.121 |
LST | °C | −11.81 | 1248.63 | 636.55 ± 251.47 |
LAI | - | 0.09 | 4.57 | 1.33 ± 0.93 |
Bulk density | g/cm3 | 120.56 | 171.12 | 155.93 ± 5.68 |
Sand | g/kg | 25.01 | 800.89 | 238.08 ± 154.00 |
Silt | g/kg | 127.11 | 682.59 | 462.03 ± 103.84 |
Clay | g/kg | 62.53 | 524.04 | 297.07 ± 64.27 |
Height | m | 78.49 | 1476.23 | 345.54 ± 189.55 |
Slope | % | 0.55 | 4.44 | 1.38 ± 0.58 |
Crop Yield | t/ha | 1.74 | 15.49 | 10.51 ± 2.20 |
Hyperparameter | MLP | KAN | ||
---|---|---|---|---|
Tested | Selected | Tested | Selected | |
Hidden Layers | 1–5 | 3 | 1–5 | 2 |
Unit Size per Layer | 32–512 | 128 | 8–512 | 128 |
Learning Rate | 10−5–10−1 | 10−3 | 10−5–10−1 | 10−2 |
Activation Function | ReLU, Tanh, Sigmoid | ReLU | B-spline | B-spline |
Optimizer | Adam, SGD | Adam | Adam, LBFGS | LBFGS |
Regularization | 10−6–10−1 | 10−4 | 10−6–10−1 | 10−5 |
Grid Size | N/A | N/A | 2–20 | 10 |
Entropy Regularization | N/A | N/A | 10−6–10−1 | 10−4 |
Basis Function | N/A | N/A | 2–10 | 3 |
Model | MAE | RMSE | R2 |
---|---|---|---|
SVR | 0.74 | 0.96 | 0.80 |
RFR | 0.68 | 0.91 | 0.82 |
KNN | 0.68 | 0.93 | 0.81 |
LASSO | 0.76 | 1.01 | 0.79 |
MLP | 0.71 | 0.95 | 0.81 |
KAN | 0.62 | 0.84 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isik, M.S.; Ozturk, O.; Celik, M.F. Kolmogorov–Arnold Networks for Interpretable Crop Yield Prediction Across the U.S. Corn Belt. Remote Sens. 2025, 17, 2500. https://doi.org/10.3390/rs17142500
Isik MS, Ozturk O, Celik MF. Kolmogorov–Arnold Networks for Interpretable Crop Yield Prediction Across the U.S. Corn Belt. Remote Sensing. 2025; 17(14):2500. https://doi.org/10.3390/rs17142500
Chicago/Turabian StyleIsik, Mustafa Serkan, Ozan Ozturk, and Mehmet Furkan Celik. 2025. "Kolmogorov–Arnold Networks for Interpretable Crop Yield Prediction Across the U.S. Corn Belt" Remote Sensing 17, no. 14: 2500. https://doi.org/10.3390/rs17142500
APA StyleIsik, M. S., Ozturk, O., & Celik, M. F. (2025). Kolmogorov–Arnold Networks for Interpretable Crop Yield Prediction Across the U.S. Corn Belt. Remote Sensing, 17(14), 2500. https://doi.org/10.3390/rs17142500