A Machine Learning-Based Assessment of Proxies and Drivers of Harmful Algal Blooms in the Western Lake Erie Basin Using Satellite Remote Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Physicochemical Water-Quality Dataset
2.2.2. Meteorological Dataset
2.2.3. Harmonized Landsat Sentinel (HLS) Dataset
2.2.4. Spectral Band Indices
2.3. Data Quality Control
2.4. Exploratory Data Analysis
2.4.1. Annual and Seasonal Patterns in Chl-a Concentration
2.4.2. Relationship of Chl-a with Physicochemical and Meteorological Variables
2.5. Machine Learning Algorithms
2.6. Model Optimization and Evaluation
2.7. Model Interpretation
3. Results
3.1. Variability in Model Performance Across Input Groups
3.1.1. Model Performance Using Spectral Bands and Band-Derived Indices
3.1.2. Model Performance Using Bands and Physicochemical Parameters
3.1.3. Model Performance Using Bands and Meteorological Parameters
3.1.4. Model Performance Using All Input Variables
3.2. Global and Local Explanations of Models with Varying Input Variables
3.2.1. Global Explanation of Models
3.2.2. Local Explanation of Models
3.3. Explaining Model Behavior: Effects of Key Individual Predictors and Interactions
4. Discussion
4.1. Comparative Evaluation of Satellite-Based Chlorophyll-a Estimation Approaches in Western Lake Erie
4.2. Model Performances Across Various Variable Combinations
4.3. Model Interpretability for Chl-a Prediction Using SHAP Analyses
4.4. Model Selection Rationale and Future Directions
5. Conclusions
- −
- When combining physicochemical (i.e., water chemistry) data with spectral satellite information, the models achieved an R2 of up to 0.76 and an RMSE down to 8.04 µg/L, underscoring the value of combining high-spectral and physicochemical inputs for optimal model performance.
- −
- Models that rely solely on meteorological inputs with spectral bands perform considerably worse (R2 < 0.40 across all three algorithms). This suggests that meteorological variables by themselves have limited power to predict Chl-a in our study area.
- −
- Using only satellite-derived variables (no ground chemistry and no meteorology) resulted in moderate performance, with R2 up to 0.48. While these values are lower than those of models with BI + PC variables, satellite-only approaches could still be practical for preliminary monitoring, especially where field sampling is difficult or expensive.
- −
- When we used all 20 variables (physicochemical + meteorological + spectral), we did not necessarily see an increase in model performance compared to models with B + PC variables.
- −
- While SVR achieved the highest R2 in more individual runs, XGB demonstrated the most stable and consistently strong performance across various input configurations, a key advantage for practical applications where model robustness to data variability is essential.
- −
- The differences observed in variable rankings across models emphasize that algorithm selection influences not only predictive performance but also the interoperability and stability of the resulting models, which can be a key consideration for operational water-quality monitoring.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hao, Y.; Tang, D.; Yu, L.; Xing, Q. Nutrient and Chlorophyll a Anomaly in Red-Tide Periods of 2003–2008 in Sishili Bay, China. Chin. J. Oceanol. Limnol. 2011, 29, 664–673. [Google Scholar] [CrossRef]
- Tewari, M.; Kishtawal, C.M.; Moriarty, V.W.; Ray, P.; Singh, T.; Zhang, L.; Treinish, L.; Tewari, K. Improved Seasonal Prediction of Harmful Algal Blooms in Lake Erie Using Large-Scale Climate Indices. Commun. Earth Environ. 2022, 3, 195. [Google Scholar] [CrossRef]
- Carmichael, W.W.; Boyer, G.L. Health Impacts from Cyanobacteria Harmful Algae Blooms: Implications for the North American Great Lakes. Harmful Algae 2016, 54, 194–212. [Google Scholar] [CrossRef] [PubMed]
- Backer, L.C.; Manassaram-Baptiste, D.; Leprell, R.; Bolton, B. Cyanobacteria and Algae Blooms: Review of Health and Environmental Data from the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) 2007–2011. Toxins 2007, 7, 1048–1064. [Google Scholar] [CrossRef] [PubMed]
- Larkin, S.L.; Adams, C.M. Economic Consequences of Harmful Algal Blooms: Literature Summary. EDIS 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Hoagland, P.; Anderson, D.M.; Kaoru, Y.; White, A.W. The Economic Effects of Harmful Algal Blooms in the United States: Estimates, Assessment Issues, and Information Needs. Estuaries 2002, 25, 819–837. [Google Scholar] [CrossRef]
- Ai, H.; Zhang, K.; Sun, J.; Zhang, H. Short-Term Lake Erie Algal Bloom Prediction by Classification and Regression Models. Water Res. 2023, 232, 119710. [Google Scholar] [CrossRef]
- Mu, M.; Li, Y.; Bi, S.; Lyu, H.; Xu, J.; Lei, S.; Miao, S.; Zeng, S.; Zheng, Z.; Du, C. Prediction of Algal Bloom Occurrence Based on the Naive Bayesian Model Considering Satellite Image Pixel Differences. Ecol. Indic. 2021, 124, 107416. [Google Scholar] [CrossRef]
- Michalak, A.M.; Anderson, E.J.; Beletsky, D.; Boland, S.; Bosch, N.S.; Bridgeman, T.B.; Chaffin, J.D.; Cho, K.; Confesor, R.; Daloglu, I.; et al. Record-Setting Algal Bloom in Lake Erie Caused by Agricultural and Meteorological Trends Consistent with Expected Future Conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6448–6452. [Google Scholar] [CrossRef]
- Mohamed, M.N.; Wellen, C.; Parsons, C.T.; Taylor, W.D.; Arhonditsis, G.; Chomicki, K.M.; Boyd, D.; Weidman, P.; Mundle, S.O.C.; Cappellen, P.V.; et al. Understanding and Managing the Re-Eutrophication of Lake Erie: Knowledge Gaps and Research Priorities. Freshw. Sci. 2019, 38, 675–691. [Google Scholar] [CrossRef]
- Papenfus, M.; Schaeffer, B.; Pollard, A.I.; Loftin, K. Exploring the Potential Value of Satellite Remote Sensing to Monitor Chlorophyll-a for US Lakes and Reservoirs. Environ. Monit. Assess. 2020, 192, 808. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Stumpf, R.P.; Schaeffer, B.; Werdell, P.J.; Loftin, K.A.; Meredith, A. Evaluation of a Satellite-Based Cyanobacteria Bloom Detection Algorithm Using Field-Measured Microcystin Data. Sci. Total Environ. 2021, 774, 145462. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, P. A New Bio-Optical Algorithm for the Remote Sensing of Algal Blooms in Complex Ocean Waters. J. Geophys. Res. Ocean. 2011, 116, 4016. [Google Scholar] [CrossRef]
- Tian, S.; Guo, H.; Xu, W.; Zhu, X.; Wang, B.; Zeng, Q.; Mai, Y.; Huang, J.J. Remote Sensing Retrieval of Inland Water Quality Parameters Using Sentinel-2 and Multiple Machine Learning Algorithms. Environ. Sci. Pollut. Res. 2023, 30, 18617–18630. [Google Scholar] [CrossRef]
- Chawla, I.; Karthikeyan, L.; Mishra, A.K. A Review of Remote Sensing Applications for Water Security: Quantity, Quality, and Extremes. J. Hydrol. 2020, 585, 124826. [Google Scholar] [CrossRef]
- Pirasteh, S.; Mollaee, S.; Narges Fatholahi, S.; Li, J. Estimation of Phytoplankton Chlorophyll-a Concentrations in the Western Basin of Lake Erie Using Sentinel-2 and Sentinel-3 Data. Can. J. Remote Sens. 2020, 46, 585–602. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.S.; Abbas, S.; Asim, M. Evaluating Landsat-8 and Sentinel-2 Data Consistency for High Spatiotemporal Inland and Coastal Water Quality Monitoring. Remote Sens. 2022, 14, 3155. [Google Scholar] [CrossRef]
- Salem, S.I.; Higa, H.; Kim, H.; Kobayashi, H.; Oki, K.; Oki, T. Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands. Sensors 2017, 17, 1746. [Google Scholar] [CrossRef]
- Verhamme, E.M.; Redder, T.M.; Schlea, D.A.; Grush, J.; Bratton, J.F.; DePinto, J.V. Development of the Western Lake Erie Ecosystem Model (WLEEM): Application to Connect Phosphorus Loads to Cyanobacteria Biomass. J. Great Lakes Res. 2016, 42, 1193–1205. [Google Scholar] [CrossRef]
- Walsh, J.J.; Penta, B.; Dieterle, D.A.; Bissett, W.P. Predictive Ecological Modeling of Harmful Algal Blooms. Hum. Ecol. Risk Assess. Int. J. 2001, 7, 1369–1383. [Google Scholar] [CrossRef]
- Yu, P.; Gao, R.; Zhang, D.; Liu, Z.P. Predicting Coastal Algal Blooms with Environmental Factors by Machine Learning Methods. Ecol. Indic. 2021, 123, 107334. [Google Scholar] [CrossRef]
- Wen, J.; Yang, J.; Li, Y.; Gao, L. Harmful Algal Bloom Warning Based on Machine Learning in Maritime Site Monitoring. Knowl.-Based Syst. 2022, 245, 108569. [Google Scholar] [CrossRef]
- Izadi, M.; Sultan, M.; Kadiri, R.E.; Ghannadi, A.; Abdelmohsen, K. A Remote Sensing and Machine Learning-Based Approach to Forecast the Onset of Harmful Algal Bloom. Remote Sens. 2021, 13, 3863. [Google Scholar] [CrossRef]
- Khan, R.M.; Salehi, B.; Mahdianpari, M.; Mohammadimanesh, F.; Mountrakis, G.; Quackenbush, L.J. A Meta-Analysis on Harmful Algal Bloom (Hab) Detection and Monitoring: A Remote Sensing Perspective. Remote Sens. 2021, 13, 4347. [Google Scholar] [CrossRef]
- Park, J.; Khanal, S.; Zhao, K.; Byun, K. Remote Sensing of Chlorophyll-a and Water Quality over Inland Lakes: How to Alleviate Geo-Location Error and Temporal Discrepancy in Model Training. Remote Sens. 2024, 16, 2761. [Google Scholar] [CrossRef]
- Huang, H.; Wang, W.; Lv, J.; Liu, Q.; Liu, X.; Xie, S.; Wang, F.; Feng, J. Relationship between Chlorophyll a and Environmental Factors in Lakes Based on the Random Forest Algorithm. Water 2022, 14, 3128. [Google Scholar] [CrossRef]
- Chegoonian, A.M.; Zolfaghari, K.; Baulch, H.M.; Duguay, C.R. Support Vector Regression for Chlorophyll-a Estimation Using Sentinel-2 Images in Small Waterbodies. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 7449–7452. [Google Scholar] [CrossRef]
- Korff, B. Von Assessing and Forecasting Chlorophyll Abundances in Minnesota Lakes Using Remote Sensing and Statistical Approaches. Master’s Thesis, Minnesota State University, Mankato, MN, USA, 2016. [Google Scholar]
- Dagtekin Bsc, O. Deep Learning for the Early Detection of Harmful Algal Blooms and Improving Water Quality Monitoring. Ph.D. Thesis, University of Hull, Hull, UK, 2022. [Google Scholar]
- Ly, Q.V.; Nguyen, X.C.; Lê, N.C.; Truong, T.D.; Hoang, T.H.T.; Park, T.J.; Maqbool, T.; Pyo, J.C.; Cho, K.H.; Lee, K.S.; et al. Application of Machine Learning for Eutrophication Analysis and Algal Bloom Prediction in an Urban River: A 10-Year Study of the Han River, South Korea. Sci. Total Environ. 2021, 797, 149040. [Google Scholar] [CrossRef]
- Chaffin, J.; Bratton, J.F.; Verhamme, E.M.; Bair, H.B.; Beecher, A.A.; Binding, C.E.; Birbeck, J.A.; Bridgeman, T.B.; Chang, X.; Crossman, J.; et al. The Lake Erie HABs Grab: A Binational Collaboration to Characterize the Western Basin Cyanobacterial Harmful Algal Blooms at an Unprecedented High-Resolution Spatial Scale. Harmful Algae 2021, 108, 102080. [Google Scholar] [CrossRef]
- Bartish, T. A Review of Exchange Processes Among the Three Basins of Lake Erie. J. Great Lakes Res. 1987, 13, 607–618. [Google Scholar] [CrossRef]
- Joshi, N.; Park, J.; Zhao, K.; Londo, A.; Khanal, S. Monitoring Harmful Algal Blooms and Water Quality Using Sentinel-3 OLCI Satellite Imagery with Machine Learning. Remote Sens. 2024, 16, 2444. [Google Scholar] [CrossRef]
- Stone Lab Algal and Water Quality Laboratory. Available online: https://ohioseagrant.osu.edu/research/live/water (accessed on 19 June 2025).
- Stackhouse, P. Methodology. Available online: https://power.larc.nasa.gov/docs/methodology/ (accessed on 19 June 2025).
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 Surface Reflectance Data Set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Kahru, M.; Leppanen, J.M.; Rud, O. Cyanobacterial Blooms Cause Heating of the Sea Surface. Mar. Ecol. Prog. Ser. 1993, 101, 1–8. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote Estimation of Chlorophyll Content in Higher Plant Leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Van der Merwe, D.; Price, K.P. Harmful Algal Bloom Characterization at Ultra-High Spatial and Temporal Resolution Using Small Unmanned Aircraft Systems. Toxins 2015, 7, 1065–1078. [Google Scholar] [CrossRef] [PubMed]
- Lacaux, J.P.; Tourre, Y.M.; Vignolles, C.; Ndione, J.A.; Lafaye, M. Classification of Ponds from High-Spatial Resolution Remote Sensing: Application to Rift Valley Fever Epidemics in Senegal. Remote Sens. Environ. 2007, 106, 66–74. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote Estimation of Canopy Chlorophyll Content in Crops. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Alawadi, F. Detection of Surface Algal Blooms Using the Newly Developed Algorithm Surface Algal Bloom Index (SABI). In Remote Sensing of the Ocean, Sea Ice, and Large Water Regions 2010; SPIE: Bellingham, WA, USA, 2010; Volume 7825, p. 782506. [Google Scholar] [CrossRef]
- Fang, C.; Song, K.S.; Shang, Y.X.; Ma, J.H.; Wen, Z.D.; Du, J. Remote Sensing of Harmful Algal Blooms Variability for Lake Hulun Using Adjusted FAI (AFAI) Algorithm. J. Environ. Inform. 2019, 34, 108–122. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; Van Leeuwen, W. A Comparison of Vegetation Indices over a Global Set of TM Images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, R.; Duan, H.; Loiselle, S.A.; Xu, J.; Ma, M. A Novel Algorithm to Estimate Algal Bloom Coverage to Subpixel Resolution in Lake Taihu. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3060–3068. [Google Scholar] [CrossRef]
- Cao, M.; Qing, S.; Jin, E.; Hao, Y.; Zhao, W. A Spectral Index for the Detection of Algal Blooms Using Sentinel-2 Multispectral Instrument (MSI) Imagery: A Case Study of Hulun Lake, China. Int. J. Remote Sens. 2021, 42, 4514–4535. [Google Scholar] [CrossRef]
- Alharbi, B. Remote Sensing Techniques for Monitoring Algal Blooms in the Area between Jeddah and Rabigh on the Red Sea Coast. Remote Sens. Appl. Soc. Environ. 2023, 30, 100935. [Google Scholar] [CrossRef]
- Kislik, C.; Dronova, I.; Kelly, M. UAVs in Support of Algal Bloom Research: A Review of Current Applications and Future Opportunities. Drones 2018, 2, 35. [Google Scholar] [CrossRef]
- Elhag, M.; Gitas, I.; Othman, A.; Bahrawi, J.; Psilovikos, A.; Al-Amri, N. Time Series Analysis of Remotely Sensed Water Quality Parameters in Arid Environments, Saudi Arabia. Environ. Dev. Sustain. 2021, 23, 1392–1410. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.S.; Ho, H.C.; Nazeer, M.; Nichol, J.; Abbas, S.; Tang, D.; Lee, K.H.; Pun, L. Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-Ii Waters: A Case Study of Hong Kong. Remote Sens. 2019, 11, 617. [Google Scholar] [CrossRef]
- Malinowski, R.; Groom, G.; Schwanghart, W.; Heckrath, G. Detection and Delineation of Localized Flooding from WorldView-2 Multispectral Data. Remote Sens. 2015, 7, 14853–14875. [Google Scholar] [CrossRef]
- Yip, H.D.; Johansson, J.; Hudson, J.J. A 29-Year Assessment of the Water Clarity and Chlorophyll-a Concentration of a Large Reservoir: Investigating Spatial and Temporal Changes Using Landsat Imagery. J. Great Lakes Res. 2015, 41, 34–44. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I.; Stisen, S. Evaluating MODIS, MERIS, and VEGETATION Vegetation Indices Using in Situ Measurements in a Semiarid Environment. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1774–1786. [Google Scholar] [CrossRef]
- Maeda, E.E.; Lisboa, F.; Kaikkonen, L.; Kallio, K.; Koponen, S.; Brotas, V.; Kuikka, S. Temporal Patterns of Phytoplankton Phenology across High Latitude Lakes Unveiled by Long-Term Time Series of Satellite Data. Remote Sens. Environ. 2019, 221, 609–620. [Google Scholar] [CrossRef]
- Stefan, H.G.; Preud’homme, E.B. Stream Temperature Estimation From Air Temperature. JAWRA J. Am. Water Resour. Assoc. 1993, 29, 27–45. [Google Scholar] [CrossRef]
- Alvarez-Vanhard, E.; Corpetti, T.; Houet, T. UAV & Satellite Synergies for Optical Remote Sensing Applications: A Literature Review. Sci. Remote Sens. 2021, 3, 100019. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Leaming 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Pamula, A.S.P.; Gholizadeh, H.; Krzmarzick, M.J.; Mausbach, W.E.; Lampert, D.J. A Remote Sensing Tool for near Real-Time Monitoring of Harmful Algal Blooms and Turbidity in Reservoirs. JAWRA J. Am. Water Resour. Assoc. 2023, 59, 929–949. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Melkumova, L.E.; Shatskikh, S.Y. Comparing Ridge and LASSO Estimators for Data Analysis. Procedia Eng. 2017, 201, 746–755. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in neural information processing systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Jeong, B.; Chapeta, M.R.; Kim, M.; Kim, J.; Shin, J.; Cha, Y. Machine Learning-Based Prediction of Harmful Algal Blooms in Water Supply Reservoirs. Water Qual. Res. J. 2022, 57, 304. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, T.H.; Shin, J.; Lee, D.S.; Park, Y.S.; Kim, Y.; Cha, Y.K. Validity Evaluation of a Machine-Learning Model for Chlorophyll a Retrieval Using Sentinel-2 from Inland and Coastal Waters. Ecol. Indic. 2022, 137, 108737. [Google Scholar] [CrossRef]
- Park, J.; Lee, W.H.; Kim, K.T.; Park, C.Y.; Lee, S.; Heo, T.Y. Interpretation of Ensemble Learning to Predict Water Quality Using Explainable Artificial Intelligence. Sci. Total Environ. 2022, 832, 155070. [Google Scholar] [CrossRef]
- Ali, K.; Witter, D.; Ortiz, J. Application of Empirical and Semi-Analytical Algorithms to MERIS Data for Estimating Chlorophyll a in Case 2 Waters of Lake Erie. Env. Earth Sci. 2014, 71, 4209–4220. [Google Scholar] [CrossRef]
- Zolfaghari, K.; Duguay, C. Estimation of Water Quality Parameters in Lake Erie from MERIS Using Linear Mixed Effect Models. Remote Sens. 2016, 8, 473. [Google Scholar] [CrossRef]
- Fan, J.; Wang, X.; Wu, L.; Zhou, H.; Zhang, F.; Yu, X.; Lu, X.; Xiang, Y. Comparison of Support Vector Machine and Extreme Gradient Boosting for Predicting Daily Global Solar Radiation Using Temperature and Precipitation in Humid Subtropical Climates: A Case Study in China. Energy Convers. Manag. 2018, 164, 102–111. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. An Assessment of the Black Ocean Pixel Assumption for MODIS SWIR Bands. Remote Sens. Environ. 2009, 113, 1587–1597. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Advantages of High Quality SWIR Bands for Ocean Colour Processing: Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef]
- Hu, C. A Novel Ocean Color Index to Detect Floating Algae in the Global Oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Guimarães, D.B.M.M.; Lima Neto, I.E. Chlorophyll-a Prediction in Tropical Reservoirs as a Function of Hydroclimatic Variability and Water Quality. Environ. Sci. Pollut. Res. 2023, 30, 91028–91045. [Google Scholar] [CrossRef]
- Adams, H.; Ye, J.; Persaud, B.; Slowinski, S.; Kheyrollah Pour, H.; Van Cappellen, P. Chlorophyll-a Growth Rates and Related Environmental Variables in Global Temperate and Cold-Temperate Lakes. Earth Syst. Sci. Data 2021, 14, 5139–5156. [Google Scholar] [CrossRef]
- Deng, J.; Paerl, H.W.; Qin, B.; Zhang, Y.; Zhu, G.; Jeppesen, E.; Cai, Y.; Xu, H. Climatically-Modulated Decline in Wind Speed May Strongly Affect Eutrophication in Shallow Lakes. Sci. Total Environ. 2018, 645, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Yang, G.; Ma, J.; Wu, T.; Li, W.; Liu, L.; Deng, J.; Zhou, J. Spatiotemporal Changes of Cyanobacterial Bloom in Large Shallow Eutrophic Lake Taihu, China. Front. Microbiol. 2018, 9, 451. [Google Scholar] [CrossRef]
- Lee, G.F.; Jones-Lee, A.; Rast, W.; Macero, A. El Secchi Depth as a Water Quality Parameter. Available online: https://www.gfredlee.com/Nutrients/Secchi_Depth.pdf (accessed on 19 June 2025).
- Deng, J.; Chen, F.; Hu, W.; Lu, X.; Xu, B.; Hamilton, D.P. Variations in the Distribution of Chl-a and Simulation Using a Multiple Regression Model. Int. J. Environ. Res. Public Health 2019, 16, 4553. [Google Scholar] [CrossRef]
- Stow, C.A.; Cha, Y. Are Chlorophyll a -Total Phosphorus Correlations Useful for Inference and Prediction? Environ. Sci. Technol. 2013, 47, 3768–3773. [Google Scholar] [CrossRef]
- Hollister, J.W.; Kreakie, B.J.; Wilson, A.E.; Marion, J.W. Associations between Chlorophyll a and Various Microcystin Health Advisory Concentrations. F1000Research 2016, 5, 151. [Google Scholar] [CrossRef] [PubMed]
- Cunha, D.G.F.; Dodds, W.K.; Arthur, S.; Loiselle, S.A. Factors Related to Water Quality and Thresholds for Microcystin Concentrations in Subtropical Brazilian Reservoirs. Inland Water 2018, 8, 368–380. [Google Scholar] [CrossRef]
- Francy, D.S.; Brady, A.M.G.; Stelzer, E.A.; Cicale, J.R.; Hackney, C.; Dalby, H.D.; Struffolino, P.; Dwyer, D.F. Predicting Microcystin Concentration Action-Level Exceedances Resulting from Cyanobacterial Blooms in Selected Lake Sites in Ohio. Environ. Monit. Assess 2020, 192, 513. [Google Scholar] [CrossRef] [PubMed]
Indices | Formulae | Reference |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | [38] | |
Green Normalized Difference Vegetation Index (GNDVI) | [39] | |
Blue Normalized Difference Vegetation Index (BNDVI) | [40] | |
Normalized Difference Turbidity Index (NDTI) | [41] | |
Green Chlorophyll Index (GCI) | [42] | |
Surface Algal Bloom Index (SABI) | [43] | |
Adjusted Floating Algal Index (AFAI) | [44] | |
Enhanced Vegetation Index (EVI) | [45] |
Category | Parameter | Abbr. | Unit | Data Source |
---|---|---|---|---|
Physicochemical water-quality factors | Total Phosphorus | TP | µg P/L | (Ohio Sea Grant, 2022) |
Total Nitrogen | TN | µg NP/L | ||
Secchi Depth | SD | M | ||
Microcystin | MC | µg/L | ||
Dissolved Organic Matter | DOM | µg/L | ||
Water Temperature | WT | °C | ||
Meteorological factors | Solar Radiation or Sunlight | SR | kWh/m2/day | (NASA POWER) |
Wind Speed | WS | m/s | ||
Wind Direction | WD | Degrees | ||
Humidity | HMD | g/kg | ||
Precipitation | PCP | Mm | ||
Spectral bands | Red | Red | Nm | |
Green | Green | Nm | ||
Blue | Blue | Nm | (NASA EarthData) | |
NIR | NIR | Nm | ||
SWIR2 | SWIR2 | Nm | ||
Band indices | NDVI | NDVI | - | (NASA EarthData) |
NDTI | NDTI | - | ||
SABI | SABI | - | ||
EVI | EVI | - |
SVR | XGB | RF |
---|---|---|
Cost, Gamma, Epsilon, Degree, Kernel | n_estimators, max_depth, learning_rate, gamma, reg_alpha (L1), reg_lambda (L2), min_child_weight, subsample, colsample_bytree | n_estimators, max_depth, min_samples_leaf, min_samples_split |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, N.; Ghoorkhanian, A.; Park, J.; Zhao, K.; Khanal, S. A Machine Learning-Based Assessment of Proxies and Drivers of Harmful Algal Blooms in the Western Lake Erie Basin Using Satellite Remote Sensing. Remote Sens. 2025, 17, 2164. https://doi.org/10.3390/rs17132164
Joshi N, Ghoorkhanian A, Park J, Zhao K, Khanal S. A Machine Learning-Based Assessment of Proxies and Drivers of Harmful Algal Blooms in the Western Lake Erie Basin Using Satellite Remote Sensing. Remote Sensing. 2025; 17(13):2164. https://doi.org/10.3390/rs17132164
Chicago/Turabian StyleJoshi, Neha, Armeen Ghoorkhanian, Jongmin Park, Kaiguang Zhao, and Sami Khanal. 2025. "A Machine Learning-Based Assessment of Proxies and Drivers of Harmful Algal Blooms in the Western Lake Erie Basin Using Satellite Remote Sensing" Remote Sensing 17, no. 13: 2164. https://doi.org/10.3390/rs17132164
APA StyleJoshi, N., Ghoorkhanian, A., Park, J., Zhao, K., & Khanal, S. (2025). A Machine Learning-Based Assessment of Proxies and Drivers of Harmful Algal Blooms in the Western Lake Erie Basin Using Satellite Remote Sensing. Remote Sensing, 17(13), 2164. https://doi.org/10.3390/rs17132164