Impacts of Typhoon Tracks on Frontal Changes Modulating Chlorophyll Distribution in the Pearl River Estuary
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Area and Typhoons Merbok (2017) and Nuri (2020)
2.2. Satellite Data Sources
2.3. Detection of Ocean Front
2.4. Calculation of Ekman Pumping
3. Results
3.1. Changes in Fronts in the PRE and Adjacent Waters Before and After Typhoons
3.2. Changes in Wind and EPV Before and After Typhoons
3.3. Response of Chlorophyll Distribution to Changes in Frontal Activity After Typhoons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, F.; Lao, Q.; Lu, X.; Wang, C.; Chen, C.; Liu, S.; Zhou, X. A Review of the Marine Biogeochemical Response to Typhoons. Mar. Pollut. Bull. 2023, 194, 115408. [Google Scholar] [CrossRef] [PubMed]
- Herbeck, L.S.; Unger, D.; Krumme, U.; Liu, S.M.; Jennerjahn, T.C. Typhoon-Induced Precipitation Impact on Nutrient and Suspended Matter Dynamics of a Tropical Estuary Affected by Human Activities in Hainan, China. Estuar. Coast. Shelf Sci. 2011, 93, 375–388. [Google Scholar] [CrossRef]
- Honda, M.C.; Sasai, Y.; Siswanto, E.; Kuwano-Yoshida, A.; Aiki, H.; Cronin, M.F. Impact of Cyclonic Eddies and Typhoons on Biogeochemistry in the Oligotrophic Ocean Based on Biogeochemical/Physical/Meteorological Time-Series at Station KEO. Prog. Earth Planet. Sci. 2018, 5, 42. [Google Scholar] [CrossRef]
- Mok, J.-S.; Kim, S.-H.; Kim, J.; Cho, H.; An, S.-U.; Choi, A.; Kim, B.; Yoon, C.; Thamdrup, B.; Hyun, J.-H. Impacts of Typhoon-Induced Heavy Rainfalls and Resultant Freshwater Runoff on the Partitioning of Organic Carbon Oxidation and Nutrient Dynamics in the Intertidal Sediments of the Han River Estuary, Yellow Sea. Sci. Total Environ. 2019, 691, 858–867. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Tong, C. A Review on Impact of Typhoons and Hurricanes on Coastal Wetland Ecosystems. Acta Ecol. Sin. 2016, 36, 23–29. [Google Scholar] [CrossRef]
- Chen, C.-T.A.; Liu, C.-T.; Chuang, W.S.; Yang, Y.J.; Shiah, F.-K.; Tang, T.Y.; Chung, S.W. Enhanced Buoyancy and Hence Upwelling of Subsurface Kuroshio Waters after a Typhoon in the Southern East China Sea. J. Mar. Syst. 2003, 42, 65–79. [Google Scholar] [CrossRef]
- Liu, S.-S.; Sun, L.; Wu, Q.; Yang, Y. The Responses of Cyclonic and Anticyclonic Eddies to Typhoon Forcing: The Vertical Temperature-Salinity Structure Changes Associated with the Horizontal Convergence/Divergence. J. Geophys. Res. Oceans 2017, 122, 4974–4989. [Google Scholar] [CrossRef]
- Lao, Q.; Lu, X.; Chen, F.; Jin, G.; Chen, C.; Zhou, X.; Zhu, Q. Effects of Upwelling and Runoff on Water Mass Mixing and Nutrient Supply Induced by Typhoons: Insight from Dual Water Isotopes Tracing. Limnol. Oceanogr. 2023, 68, 284–295. [Google Scholar] [CrossRef]
- Chen, C.; Lao, Q.; Zhou, X.; Jin, G.; Zhu, Q.; Chen, F. Tracks of Typhoon Movement (Left and Right Sides) Control Marine Dynamics and Eco-Environment in the Coastal Bays after Typhoons: A Case Study in Zhanjiang Bay. Sci. Total Environ. 2023, 912, 168944. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Kuwahara, V.S.; Hamasaki, K.; Tada, Y.; Ichikawa, T.; Yoshiki, T.; Nakajima, R.; Imai, A.; Shimode, S.; Toda, T. Typhoon-Induced Response of Phytoplankton and Bacteria in Temperate Coastal Waters. Estuar. Coast. Shelf Sci. 2015, 167, 458–465. [Google Scholar] [CrossRef]
- Jiang, T.; Wu, G.; Niu, P.; Cui, Z.; Bian, X.; Xie, Y.; Shi, H.; Xu, X.; Qu, K. Short-Term Changes in Algal Blooms and Phytoplankton Community after the Passage of Super Typhoon Lekima in a Temperate and Inner Sea (Bohai Sea) in China. Ecotoxicol. Environ. Saf. 2022, 232, 113223. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-C.; Gong, G.-C. Biogeochemical Responses in the Southern East China Sea after Typhoons. Oceanography 2011, 24, 42–51. [Google Scholar] [CrossRef]
- Lao, Q.; Chen, F.; Jin, G.; Lu, X.; Chen, C.; Zhou, X.; Zhu, Q. Characteristics and Mechanisms of Typhoon-Induced Decomposition of Organic Matter and Its Implication for Climate Change. J. Geophys. Res. Biogeosci. 2023, 128, e2023JG007518. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, X.; Jin, G.; Chen, F.; Zhang, S.; Li, Z.; Chen, C.; Zhu, Q.; Lao, Q. Biological Impact of Typhoon Wipha in the Coastal Area of Western Guangdong: A Comparative Field Observation Perspective. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006589. [Google Scholar] [CrossRef]
- Lu, X.; Lao, Q.; Chen, C.; Liu, S.; Zhou, X.; Zhu, Q.; Chen, F. Using Stable Isotopes and Spectral Properties of Particulate and Dissolved Organic Matter to Quantify Typhoon-induced Organic Matter Decomposition. J. Geophys. Res. Oceans 2024, 129, e2023JC020629. [Google Scholar] [CrossRef]
- Acha, E.M.; Piola, A.; Iribarne, O.; Mianzan, H. Ecological Processes at Marine Fronts: Oases in the Ocean; Springer Briefs in Environmental Science; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-15479-4. [Google Scholar]
- Brandini, F.P.; Tura, P.M.; Santos, P.P.G.M. Ecosystem Responses to Biogeochemical Fronts in the South Brazil Bight. Prog. Oceanogr. 2018, 164, 52–62. [Google Scholar] [CrossRef]
- Lao, Q.; Liu, S.; Ling, Z.; Jin, G.; Chen, F.; Chen, C.; Zhu, Q. External Dynamic Mechanisms Controlling the Periodic Offshore Blooms in Beibu Gulf. J. Geophys. Res. Oceans 2023, 128, e2023JC019689. [Google Scholar] [CrossRef]
- Lao, Q.; Liu, S.; Wang, C.; Chen, F. Global Warming Weakens the Ocean Front and Phytoplankton Blooms in the Luzon Strait over the Past 40 Years. J. Geophys. Res. Biogeosci. 2023, 128, e2023JG007726. [Google Scholar] [CrossRef]
- Palter, J.B.; Marinov, I.; Sarmiento, J.L.; Gruber, N. Large-Scale, Persistent Nutrient Fronts of the World Ocean: Impacts on Biogeochemistry. In Chemical Oceanography of Frontal Zones; Belkin, I.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 25–62. ISBN 978-3-662-65839-0. [Google Scholar]
- Chapman, C.C.; Lea, M.-A.; Meyer, A.; Sallée, J.-B.; Hindell, M. Defining Southern Ocean Fronts and Their Influence on Biological and Physical Processes in a Changing Climate. Nat. Clim. Change 2020, 10, 209–219. [Google Scholar] [CrossRef]
- Mahadevan, A.; Archer, D. Modeling the Impact of Fronts and Mesoscale Circulation on the Nutrient Supply and Biogeochemistry of the Upper Ocean. J. Geophys. Res. Oceans 2000, 105, 1209–1225. [Google Scholar] [CrossRef]
- Huang, W.P. Modelling the Effects of Typhoons on Morphological Changes in the Estuary of Beinan, Taiwan. Cont. Shelf Res. 2017, 135, 1–13. [Google Scholar] [CrossRef]
- Suzuki, S.; Niino, H.; Kimura, R. The Mechanism of Upper-Oceanic Vertical Motions Forced by a Moving Typhoon. Fluid Dyn. Res. 2011, 43, 25504. [Google Scholar] [CrossRef]
- Lao, Q.; Lu, X.; Chen, F.; Chen, C.; Jin, G.; Zhu, Q. A Comparative Study on Source of Water Masses and Nutrient Supply in Zhanjiang Bay during the Normal Summer, Rainstorm, and Typhoon Periods: Insights from Dual Water Isotopes. Sci. Total Environ. 2023, 903, 166853. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, S.; Chen, C.; Lao, Q.; Chen, F. Changes in Fronts Regulate Nitrate Cycling in Zhanjiang Bay: A Comparative Study during the Normal Wet Season, Rainstorm, and Typhoon Periods. Sci. Total Environ. 2024, 931, 172902. [Google Scholar] [CrossRef]
- Yu, Y.; Xing, X.; Liu, H.; Yuan, Y.; Wang, Y.; Chai, F. The Variability of Chlorophyll-a and Its Relationship with Dynamic Factors in the Basin of the South China Sea. J. Mar. Syst. 2019, 200, 103230. [Google Scholar] [CrossRef]
- Chen, F.; Huang, C.; Lao, Q.; Zhang, S.; Chen, C.; Zhou, X.; Lu, X.; Zhu, Q. Typhoon Control of Precipitation Dual Isotopes in Southern China and Its Palaeoenvironmental Implications. J. Geophys. Res. Atmos. 2021, 126, e2020JD034336. [Google Scholar] [CrossRef]
- Li, D.; Gan, J.; Hui, R.; Liu, Z.; Yu, L.; Lu, Z.; Dai, M. Vortex and Biogeochemical Dynamics for the Hypoxia Formation within the Coastal Transition Zone off the Pearl River Estuary. J. Geophys. Res. Oceans 2020, 125, e2020JC016178. [Google Scholar] [CrossRef]
- Garnesson, P.; Mangin, A.; Fanton d’Andon, O.; Demaria, J.; Bretagnon, M. The CMEMS GlobColour Chlorophyll a Product Based on Satellite Observation: Multi-Sensor Merging and Flagging Strategies. Ocean Sci. 2019, 15, 819–830. [Google Scholar] [CrossRef]
- Belkin, I.M.; O’Reilly, J.E. An Algorithm for Oceanic Front Detection in Chlorophyll and SST Satellite Imagery. J. Mar. Syst. 2009, 78, 319–326. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Qi, Y.; Shi, P. Seasonal Variability of Thermal Fronts in the Northern South China Sea from Satellite Data. Geophys. Res. Lett. 2001, 28, 3963–3966. [Google Scholar] [CrossRef]
- Jing, Z.; Qi, Y.; Zhang, S.; Du, Y.; Xie, L. Summer Upwelling and Thermal Fronts in the Northwestern South China Sea: Observational Analysis of Two Mesoscale Mapping Surveys. J. Geophys. Res. Oceans 2015, 120, 1993–2006. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Wang, C.; Yan, Y. Interactions among the Winter Monsoon, Ocean Eddy and Ocean Thermal Front in the South China Sea. J. Geophys. Res. Oceans 2012, 117, C08002. [Google Scholar] [CrossRef]
- Price, J.F. Upper Ocean Response to a Hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, D. Absolute Geostrophic Currents in Global Tropical Oceans. Chin. J. Oceanol. Limnol. 2016, 34, 1383–1393. [Google Scholar] [CrossRef]
- Li, D.; Gan, J.; Hui, C.; Yu, L.; Liu, Z.; Lu, Z.; Kao, S.-J.; Dai, M. Spatiotemporal Development and Dissipation of Hypoxia Induced by Variable Wind-driven Shelf Circulation off the Pearl River Estuary: Observational and Modeling Studies. J. Geophys. Res. Oceans 2021, 126, e2020JC016700. [Google Scholar] [CrossRef]
- Jing, Z.; Qi, Y.; Fox-Kemper, B.; Du, Y.; Lian, S. Seasonal Thermal Fronts on the Northern South China Sea Shelf: Satellite Measurements and Three Repeated Field Surveys. J. Geophys. Res. Oceans 2016, 121, 1914–1930. [Google Scholar] [CrossRef]
- Wang, G.; Ling, Z.; Wang, C. Influence of Tropical Cyclones on Seasonal Ocean Circulation in the South China Sea. J. Geophys. Res. Oceans 2009, 114, 2009JC005302. [Google Scholar] [CrossRef]
- Li, D.; Gan, J.; Lu, Z.; Cheng, W.; Kung, H.; Li, J. Hypoxia Formation Triggered by the Organic Matter from Subsurface Chlorophyll Maximum in a Large Estuary-Shelf System. Water Res. 2023, 240, 120063. [Google Scholar] [CrossRef]
- Prants, S.V. Marine Life at Lagrangian Fronts. Prog. Oceanogr. 2022, 204, 102790. [Google Scholar] [CrossRef]
- Guo, L.; Xiu, P.; Chai, F.; Xue, H.; Wang, D.; Sun, J. Enhanced Chlorophyll Concentrations Induced by Kuroshio Intrusion Fronts in the Northern South China Sea. Geophys. Res. Lett. 2017, 44, 11565–11572. [Google Scholar] [CrossRef]
- Xing, Q.; Yu, H.; Wang, H. Global Mapping and Evolution of Persistent Fronts in Large Marine Ecosystems over the Past 40 Years. Nat. Commun. 2024, 15, 4090. [Google Scholar] [CrossRef]
- Lv, T.; Liu, D.; Zhou, P.; Lin, L.; Wang, Y.; Wang, Y. The Coastal Front Modulates the Timing and Magnitude of Spring Phytoplankton Bloom in the Yellow Sea. Water Res. 2022, 220, 118669. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Hu, C.; Liu, J.; Ma, R.; Zhang, Y.; Zhang, S. Noctiluca Blooms in the East China Sea Bounded by Ocean Fronts. Harmful Algae 2022, 112, 102172. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Meyer, A.; Strutton, P.; Fischer, A. Global Trends of Fronts and Chlorophyll in a Warming Ocean. Commun. Earth Environ. 2023, 4, 489. [Google Scholar] [CrossRef]
- Ye, F.; Jia, G.; Xie, L.; Wei, G.; Xu, J. Isotope Constraints on Seasonal Dynamics of Dissolved and Particulate N in the Pearl River Estuary, South China. J. Geophys. Res. Oceans 2016, 121, 8689–8705. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, Z.; Zu, T.; Hu, J.; Gan, J.; Yuxin, L.; Li, Z.; Quan, Q.; Cai, Z. Climatic Controls on the Interannual Variability of Shelf Circulation in the Northern South China Sea. J. Geophys. Res. Oceans 2022, 127, e2022JC018419. [Google Scholar] [CrossRef]
- Lao, Q.; Chen, F.; Liu, G.; Chen, C.; Jin, G.; Zhu, Q.; Wei, C.; Zhang, C. Isotopic Evidence for the Shift of Nitrate Sources and Active Biological Transformation on the Western Coast of Guangdong Province, South China. Mar. Pollut. Bull. 2019, 142, 603–612. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.-S. A Comprehensive Approach to Assessing Eutrophication for the Guangdong Coastal Waters in China. Front. Mar. Sci. 2024, 10, 1280821. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, S.; Liu, S.; Chen, C.; Lao, Q.; Chen, F. Thermal Fronts in Coastal Waters Regulate Phytoplankton Blooms via Acting as Barriers: A Case Study from Western Guangdong, China. J. Hydrol. 2024, 636, 131350. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, W.; Chen, Y.; Yu, L.; Gong, W. Controls on the Interannual Variability of Hypoxia in a Subtropical Embayment and Its Adjacent Waters in the Guangdong Coastal Upwelling System, Northern South China Sea. Ocean Dyn. 2018, 68, 1–16. [Google Scholar] [CrossRef]
- Yang, C.; Ye, H. Enhanced Chlorophyll-a in the Coastal Waters near the Eastern Guangdong during the Downwelling Favorable Wind Period. Remote Sens. 2022, 14, 1138. [Google Scholar] [CrossRef]
- Yu, L.; Gan, J.; Dai, M.; Hui, C.R.; Lu, Z.; Li, D. Modeling the Role of Riverine Organic Matter in Hypoxia Formation within the Coastal Transition Zone off the Pearl River Estuary. Limnol. Oceanogr. 2021, 66, 452–468. [Google Scholar] [CrossRef]
- Wang, L.; Lei, X.; Zhou, Y.; Mao, X.-Z.; Han, J.-C.; Li, B.; Huang, Y.; Zhao, R.; Bi, H.; Tang, Z.; et al. Unforeseen Nitrate Accumulation under Nutrient Mitigation Measures in the East Pearl River Estuary: Phenomenon, Drivers and Implications. J. Hydrol. Reg. Stud. 2023, 50, 101554. [Google Scholar] [CrossRef]
- Chen, J.; Cao, R.; Lao, Q.; Chen, F.; Zhang, S.; Bian, P. Typhoon Merbok Induced Upwelling Impact on Material Transport in the Coastal Northern South China Sea. PLoS ONE 2020, 15, e0228220. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, K.; Klotzbach, P.; Chand, S.; Camargo, S.; Cao, J.; Wu, L. Decreasing Global Tropical Cyclone Frequency in CMIP6 Historical Simulations. Sci. Adv. 2024, 10, eadl2142. [Google Scholar] [CrossRef]
- Wang, G.; Wu, L.; Mei, W.; Xie, S.-P. Ocean Currents Show Global Intensification of Weak Tropical Cyclones. Nature 2022, 611, 496–500. [Google Scholar] [CrossRef]
- Miles, T.; Seroka, G.; Glenn, S. Coastal Ocean Circulation during Hurricane Sandy. J. Geophys. Res. Oceans 2017, 122, 7095–7114. [Google Scholar] [CrossRef]
- Cong, S.; Wu, X.; Ge, J.; Bi, N.; Li, Y.; Lu, J.; Wang, H. Intermittent Migration of Mixing Front Driven by Typhoon Events on the Inner Shelf of the East China Sea: A FVCOM Modeling Study. Mar. Geol. 2023, 465, 107161. [Google Scholar] [CrossRef]
- Han, H.; Xiao, R.; Gao, G.; Yin, B.; Liang, S.; Lv, X. Influence of a Heavy Rainfall Event on Nutrients and Phytoplankton Dynamics in a Well-Mixed Semi-Enclosed Bay. J. Hydrol. 2023, 617, 128932. [Google Scholar] [CrossRef]
- Felt, V.; Kacker, S.; Kusters, J.; Pendergrast, J.; Cahoy, K. Fast Ocean Front Detection Using Deep Learning Edge Detection Models. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4204812. [Google Scholar] [CrossRef]
- Chen, Z.; Feng, J.; Li, T.; Zhang, S.; Lian, Q.; Wang, F. Seasonal Variability of the Pearl River Plume Front Based on Deep Learning. Cont. Shelf Res. 2025, 285, 105395. [Google Scholar] [CrossRef]
- Sung, T.; Kim, S.-H.; Sim, S.; Han, D.; Jang, E.; Im, J. Expanding High-Resolution Sea Surface Salinity Estimation from Coastal Seas to Open Oceans through the Synergistic Use of Multi-Source Data with Machine Learning. Int. J. Appl. Earth Obs. Geoinf. 2025, 137, 104427. [Google Scholar] [CrossRef]
Rain (mm) | SST (℃) | SST Gradients (℃/km) | Geouv (m/s) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nuri (2020) | Merbok (2017) | Nuri (2020) | Merbok (2017) | Nuri (2020) | Merbok (2017) | Nuri (2020) | Merbok (2017) | |||||||||
NS | OS | NS | OS | NS | OS | NS | OS | NS | OS | NS | OS | NS | OS | NS | OS | |
Pre-typhoon | 53.88 ± 24.79 | 27.28 ± 13.91 | 0.40 ± 0.77 | 0.17 ± 0.40 | 28.61 ± 0.48 | 29.06 ± 0.46 | 28.72 ± 0.31 | 28.78 ± 0.32 | 0.070 ± 0.013 | 0.057 ± 0.014 | 0.028 ± 0.005 | 0.014 ± 0.002 | 0.327 ± 0.104 | 0.142 ± 0.081 | 0.141 ± 0.059 | 0.122 ± 0.045 |
First day | 5.28 ± 4.49 | 8.89 ± 6.49 | 0.14 ± 0.13 | 0.32 ± 0.31 | 28.97 ± 0.42 | 29.00 ± 0.41 | 29.41 ± 0.31 | 28.83 ± 0.45 | 0.071 ± 0.016 | 0.057 ± 0.012 | 0.029 ± 0.005 | 0.025 ± 0.005 | 0.367 ± 0.115 | 0.150 ± 0.082 | 0.163 ± 0.062 | 0.123 ± 0.050 |
Day 4 | 0.08 ± 0.21 | 0.00 ± 0 | 22.76 ± 12.78 | 9.03 ± 8.92 | 29.14 ± 0.39 | 29.37 ± 0.25 | 28.63 ± 0.22 | 28.34 ± 0.31 | 0.035 ± 0.017 | 0.043 ± 0.008 | 0.023 ± 0.005 | 0.023 ± 0.005 | 0.385 ± 0.125 | 0.153 ± 0.080 | 0.183 ± 0.064 | 0.126 ± 0.058 |
Day 7 | 0.14 ± 0.22 | 0.01 ± 0.04 | 90.49 ± 41.99 | 140.04 ± 62.05 | 28.95 ± 0.64 | 29.71 ± 0.20 | 28.24 ± 0.16 | 27.99 ± 0.29 | 0.113 ± 0.029 | 0.033 ± 0.008 | 0.013 ± 0.003 | 0.020 ± 0.004 | 0.385 ± 0.133 | 0.153 ± 0.082 | 0.208 ± 0.067 | 0.139 ± 0.069 |
Day 14 | 0.52 ± 0.68 | 0.10 ± 0.27 | 0.85 ± 1.66 | 0.19 ± 0.47 | 29.10 ± 0.56 | 30.26 ± 0.24 | 28.61 ± 0.24 | 28.90 ± 0.17 | 0.091 ± 0.019 | 0.029 ± 0.006 | 0.031 ± 0.005 | 0.011 ± 0.002 | 0.365 ± 0.144 | 0.170 ± 0.071 | 0.212 ± 0.090 | 0.163 ± 0.101 |
Day 21 | 1.02 ± 1.3 | 0.16 ± 0.46 | 11.37 ± 13.40 | 3.89 ± 3.48 | 29.54 ± 0.67 | 30.10 ± 0.25 | 29.08 ± 0.52 | 29.69 ± 0.38 | 0.106 ± 0.021 | 0.032 ± 0.008 | 0.070 ± 0.011 | 0.023 ± 0.003 | 0.369 ± 0.144 | 0.179 ± 0.087 | 0.228 ± 0.104 | 0.184 ± 0.117 |
Wind (m/s) | EPV (×10−6 m/s) | Chla (mg/m3) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nuri (2020) | Merbok (2017) | Nuri (2020) | Merbok (2017) | Nuri (2020) | Merbok (2017) | |||||||
NS | OS | NS | OS | NS | OS | NS | OS | NS | OS | NS | OS | |
Pre-typhoon | 3.99 ± 0.93 | 4.75 ± 0.66 | 3.28 ± 0.61 | 4.16 ± 0.34 | 2.14 ± 3.80 | −2.04 ± 2.37 | −0.84 ± 2.02 | −0.63 ± 0.76 | 8.31 ± 3.34 | 2.57 ± 0.80 | 2.84 ± 1.15 | 0.60 ± 0.15 |
First day | 7.25 ± 1.13 | 8.44 ± 0.61 | 8.62 ± 1.74 | 9.32 ± 2.76 | 0.45 ± 8.19 | 1.59 ± 4.85 | −1.69 ± 1.53 | 16.52 ± 20.12 | 1.79 ± 0.51 | 0.69 ± 0.18 | 13.00 ± 3.89 | 0.28 ± 0.06 |
Day 4 | 4.81 ± 0.67 | 4.91 ± 0.60 | 5.56 ± 1.31 | 6.84 ± 0.28 | 1.77 ± 4.89 | −3.75 ± 0.72 | 6.29 ± 8.75 | −2.66 ± 1.90 | 4.03 ± 1.78 | 1.65 ± 0.58 | 13.46 ± 3.76 | 0.30 ± 0.07 |
Day 7 | 4.60 ± 0.91 | 4.66 ± 0.22 | 6.19 ± 2.00 | 7.33 ± 0.40 | 2.75 ± 3.25 | −2.50 ± 0.82 | 10.87 ± 9.14 | −1.45 ± 2.72 | 5.79 ± 2.47 | 1.60 ± 0.35 | 3.70 ± 1.00 | 2.3 ± 0.68 |
Day 14 | 4.04 ± 0.57 | 4.51 ± 0.67 | 6.13 ± 1.20 | 6.82 ± 0.17 | 1.27 ± 3.12 | −2.90 ± 0.48 | 6.21 ± 6.45 | −2.46 ± 1.50 | 2.81 ± 0.83 | 0.76 ± 0.12 | 11.78 ± 4.98 | 2.79 ± 0.93 |
Day 21 | 4.13 ± 0.89 | 5.34 ± 0.58 | 5.33 ± 1.06 | 6.71 ± 0.38 | 1.82 ± 3.34 | −2.74 ± 1.76 | 2.99 ± 5.47 | −1.57 ± 2.40 | 3.51 ± 1.37 | 0.52 ± 0.14 | 2.05 ± 0.81 | 0.77 ± 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Lao, Q.; Wang, C.; Liu, S.; Chen, F. Impacts of Typhoon Tracks on Frontal Changes Modulating Chlorophyll Distribution in the Pearl River Estuary. Remote Sens. 2025, 17, 2165. https://doi.org/10.3390/rs17132165
Zhao Q, Lao Q, Wang C, Liu S, Chen F. Impacts of Typhoon Tracks on Frontal Changes Modulating Chlorophyll Distribution in the Pearl River Estuary. Remote Sensing. 2025; 17(13):2165. https://doi.org/10.3390/rs17132165
Chicago/Turabian StyleZhao, Qiyao, Qibin Lao, Chao Wang, Sihai Liu, and Fajin Chen. 2025. "Impacts of Typhoon Tracks on Frontal Changes Modulating Chlorophyll Distribution in the Pearl River Estuary" Remote Sensing 17, no. 13: 2165. https://doi.org/10.3390/rs17132165
APA StyleZhao, Q., Lao, Q., Wang, C., Liu, S., & Chen, F. (2025). Impacts of Typhoon Tracks on Frontal Changes Modulating Chlorophyll Distribution in the Pearl River Estuary. Remote Sensing, 17(13), 2165. https://doi.org/10.3390/rs17132165