Impacts of Extreme Flood and Drought Events on Dish-Shaped Lake Habitats in Poyang Lake Under Altered Hydrological Regimes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. Habitat Element Extraction
2.3. Fractional Vegetation Cover Calculation
2.4. Water Surface Area Extraction
2.5. Water Area Change Rate Calculation
2.6. Statistical Analysis and Accuracy Assessment
3. Results
3.1. Temporal Variation Characteristics of Water Level
3.2. Evolution Trend of the Habitat of DSLs
3.2.1. Characteristics of Habitat Succession in DSLs Before and After Extreme Flood and Drought Events
3.2.2. Evolution of FVC from 2001 to 2024
3.3. Trends in the Changes of Water Characteristics
3.3.1. Evolution Trend of the Water Area
3.3.2. Evolution Trend of the Water Area Change Rate
4. Discussion
4.1. Impacts of Hydrological Regime Change on DSL Habitats
4.2. Impact of Artificial Regulation on the Habitat of DSLs
4.3. Impact of Habitat Evolution of DSLs on Overwintering Migratory Birds
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, M.; Yu, D.K.; Li, Z.; Liu, T.; Jing, J.F.; Wang, Y.Y. The Impact of Extreme Droughts on Aquatic Macrophyte Communities in the Sub-lakes of Poyang Lake. J. Ecol. Rural Environ. 2024, 40, 790–798. (In Chinese) [Google Scholar]
- Chen, J.; Li, Y.L.; Zhou, J.F.; Lu, J.Y.; Wei, L.; Guo, Y.Y. Assessing surface water-groundwater interactions in the seasonal lake-wetland system of Lake Poyang. J. Lake Sci. 2021, 33, 842–853. (In Chinese) [Google Scholar]
- Wei, Z.Z.; Xu, Z.L.; Dong, B.; Xu, H.F.; Lu, Z.P.; Liu, X. Habitat Suitability Evaluation and Ecological Corridor Construction of Wintering Cranes in Poyang Lake. Ecol. Eng. 2023, 189, 106894. [Google Scholar] [CrossRef]
- Hu, B.J.; Hu, X.R.; Nie, X.; Zhang, X.K.; Wu, N.C.; Hong, Y.J.; Qin, H.M. Seasonal and Inter-Annual Community Structure Characteristics of Zooplankton Driven by Water Environment Factors in a Sub-lake of Lake Poyang, China. PeerJ 2019, 7, e7590. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, H.; Li, X.C.; Li, R.H.; Huo, S.L.; Yu, G.L. Geographic Pattern of Phytoplankton Community and Their Drivers in Lakes of Middle and Lower Reaches of Yangtze River Floodplain, China. Environ. Sci. Pollut. Res. 2022, 29, 83993–84005. [Google Scholar] [CrossRef]
- Liu, X.; Qian, K.M.; Chen, Y.W.; Gao, J.F. A Comparison of Factors Influencing the Summer Phytoplankton Biomass in China’s Three Largest Freshwater Lakes: Poyang, Dongting, and Taihu. Hydrobiologia 2017, 792, 283–302. [Google Scholar] [CrossRef]
- Liu, Y.B.; Wu, G.P. Hydroclimatological Influences on Recently Increased Droughts in China’s Largest Freshwater Lake. Hydrol. Earth Syst. Sci. 2016, 20, 93–107. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.; Liu, H.; Liang, L.; Cai, Y.P.; Wang, X.; Li, C.H. Vegetation Dynamics under Water-Level Fluctuations: Implications for Wetland Restoration. J. Hydrol. 2020, 581, 124418. [Google Scholar] [CrossRef]
- Han, Z.; Sun, L.; Wang, S.Y.; Wang, J.; Liu, X.B.; Peng, W.Q. Research Progress of Numerical Simulation of Wetland Plant Ecology and Research Example of Poyang Lake Wetland. J. China Inst. Water Resour. Hydropower Res. 2022, 22, 539–557. (In Chinese) [Google Scholar]
- Shao, M.Q.; Jiang, J.H.; Hong, G.X.; Zeng, B.B. Abundance, Distribution and Diversity Variations of Wintering Water Birds in Poyang Lake, Jiangxi Province, China. Pak. J. Zool. 2014, 46, 451–462. [Google Scholar]
- Wang, Y.F.; Chen, Q.; Li, L.; Ding, H.F.; Fraser, J.D.; Hou, J.J.; Wang, W.J. The Cascading Effects of Submerged Macrophyte Collapse on Geese at Poyang Lake, China. Freshw. Biol. 2023, 68, 926–939. [Google Scholar] [CrossRef]
- Li, Y.K.; Zhong, Y.F.; Shao, R.Q.; Yan, C.; Jin, J.F.; Shan, J.H.; Li, F.S.; Ji, W.T.; Li, B.; Zhang, X.Y.; et al. Modified Hydrological Regime from the Three Gorges Dam Increases the Risk of Food Shortages for Wintering Waterbirds in Poyang Lake. Glob. Ecol. Conserv. 2020, 24, e01286. [Google Scholar] [CrossRef]
- Dai, X.; Wan, R.; Yang, G.; Wang, X.; Xu, L.; Li, Y.; Li, B. Impact of Seasonal Water-Level Fluctuations on Autumn Vegetation in Poyang Lake Wetland, China. Front. Earth Sci. 2019, 13, 398–409. [Google Scholar] [CrossRef]
- Tan, Z.; Jiang, J. Spatial–Temporal Dynamics of Wetland Vegetation Related to Water Level Fluctuations in Poyang Lake, China. Water 2016, 8, 397. [Google Scholar] [CrossRef]
- Ren, Q.; Yuan, J.; Wang, J.; Liu, X.; Ma, S.; Zhou, L.; Miao, L.; Zhang, J. Water Level Has Higher Influence on Soil Organic Carbon and Microbial Community in Poyang Lake Wetland than Vegetation Type. Microorganisms 2022, 10, 131. [Google Scholar] [CrossRef]
- Zhu, F.; Yuan, J.; Hou, Z.; Guo, X.; Liao, W.; Yang, S.; Chu, Z. Seasonal Water Level Changes Affect Plant Diversity and Littoral Widths at Different Elevation Zones in the Erhai Lake. Front. Plant Sci. 2025, 16, 1503627. [Google Scholar] [CrossRef]
- Huang, W.; Liu, X.; Tian, L.; Cui, G.; Liu, Y. Vegetation and Carbon Sink Response to Water Level Changes in a Seasonal Lake Wetland. Front. Plant Sci. 2024, 15, 1445906. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, D.; Zhang, D.; Wang, Z.; Du, B.; Yan, H.; Qiu, Z.; Feng, K.; Wang, J.; Jia, M. Mapping Phragmites australis Aboveground Biomass in the Momoge Wetland Ramsar Site Based on Sentinel-1/2 Images. Remote Sens. 2022, 14, 694. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Zhao, W.; Li, J.; Xie, S.; Zhang, C.; He, X.; Yan, D.; Wang, M. Impact of Hydrological Changes on Wetland Landscape Dynamics and Implications for Ecohydrological Restoration in Honghe National Nature Reserve, Northeast China. Water 2023, 15, 3350. [Google Scholar] [CrossRef]
- Lin, Y.L.; Li, X.H.; Tan, Z.Q.; Song, Y.Y.; Xu, C.Y. Dynamic Characteristics of Vegetation Communities in the Floodplain Wetland of Lake Poyang Based on Spatio-Temporal Fusion of Remote Sensing Data. J. Lake Sci. 2023, 35, 1408–1422. (In Chinese) [Google Scholar]
- Wang, X.; Guo, Y. Spatio-Temporal Analysis of Water Area Variability in Poyang Lake (2012–2021) Using Remote Sensing. J. Comput. Methods Sci. Eng. 2024, 25, 1432–1447. [Google Scholar] [CrossRef]
- Xia, Y.; Fang, C.; Lin, H.; Li, H.; Wu, B. Spatiotemporal Evolution of Wetland Eco-Hydrological Connectivity in the Poyang Lake Area Based on Long Time-Series Remote Sensing Images. Remote Sens. 2021, 13, 4812. [Google Scholar] [CrossRef]
- Larson, D.M.; Cordts, S.D.; Hansel-Welch, N. Shallow Lake Management Enhanced Habitat and Attracted Waterbirds during Fall Migration. Hydrobiologia. 2020, 847, 3365–3379. [Google Scholar] [CrossRef]
- Aharon-Rotman, Y.; McEvoy, J.; Zhaoju, Z.; Yu, H.; Wang, X.; Si, Y.; Xu, Z.; Yuan, Z.; Jeong, W.; Cao, L.; et al. Water Level Affects Availability of Optimal Feeding Habitats for Threatened Migratory Waterbirds. Ecol. Evol. 2017, 7, 10440–10450. [Google Scholar] [CrossRef]
- Holm, T.E.; Clausen, P. Effects of Water Level Management on Autumn Staging Waterbird and Macrophyte Diversity in Three Danish Coastal Lagoons. Biodivers. Conserv. 2006, 15, 4399–4423. [Google Scholar] [CrossRef]
- Rajpar, M.N.; Zakaria, M. Effects of Water Level Fluctuation on Waterbirds Distribution and Aquatic Vegetation Composition at Natural Wetland Reserve, Peninsular Malaysia. Int. Sch. Res. Not. 2011, 2011, 324038. [Google Scholar] [CrossRef]
- Zhao, D.H.; Lv, M.T.; Jiang, H.; Cai, Y.; Xu, D.L.; An, S.Q. Spatio-Temporal Variability of Aquatic Vegetation in Taihu Lake over the Past 30 Years. PLoS ONE 2013, 8, e66365. [Google Scholar] [CrossRef]
- Li, Y.; Dong, X.; Hu, C. The Impact of Ecological Water Level on Wintering Migratory Birds in Poyang Lake–Focusing on Phytophagous Geese. Ecol. Indic. 2024, 169, 112946. [Google Scholar] [CrossRef]
- Li, X.; Hu, B.S.; Qi, S.H.; Luo, J. The Influence of Short-Term Water Level Fluctuations on the Habitat Response and Ecological Fragility of Siberian Cranes in Poyang Lake, China. Remote Sens. 2024, 16, 4431. [Google Scholar] [CrossRef]
- Duan, H.L.; Pan, Y.W.; Yu, X.B.; Xia, S.X. Effects of Habitat Change on the Wintering Waterbird Community in China’s Largest Freshwater Lake. Remote Sens. 2023, 15, 4582. [Google Scholar] [CrossRef]
- Yu, F.H.; Zhai, J.C.; Huang, Z.Q.; Chen, J.M.; Han, F.Q.; Wang, L.B. The Impact of Poyang Lake Water Level Changes on the Landscape Pattern of Wintering. Glob. Ecol. Conserv. 2025, 58, e03453. [Google Scholar]
- Sun, F.D.; Ma, R. Hydrologic Changes of Poyang Lake Based on Radar Altimeter and Optical Sensor. Acta Geogr. Sin. 2020, 75, 544–557. [Google Scholar]
- Li, B.; Zhang, A.Z.; Sun, G.Y.; Pan, Z.J.; Fu, H. Extraction of Typical Vegetation Communities in Poyang Lake Wetland Based on Time Series Sentinel-2 Images. Remote Sens. Technol. Appl. 2024, 39, 1271–1283. (In Chinese) [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Bey, A.; Sánchez-Paus Díaz, A.; Maniatis, D.; Marchi, G.; Mollicone, D.; Ricci, S.; Bastin, J.F.; Moore, R.; Federici, S.; Rezende, M.; et al. Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote Sens. 2016, 8, 807. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The Derivation of the Green Vegetation Fraction from NOAA/AVHRR Data for Use in Numerical Weather Prediction Models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Jia, S.; Xue, D.; Li, C.; Zheng, J.; Li, W.Q. Study on New Method for Water Area Information Extraction Based on Sentinel-1 Data. Yangtze River 2019, 50, 213–217. (In Chinese) [Google Scholar]
- Meng, Q.G.; Zeng, Q.M. Water body extraction method from spaceborne ascending and descending polarimetric SAR data based on principal component analysis. J. Geo-Inf. Sci. 2024, 26, 1057–1074. (In Chinese) [Google Scholar]
- Zhang, W.; Yang, X.; Manlike, A.; Jin, Y.X.; Zheng, F.L.; Guo, J.; Shen, G.; Zhang, Y.J.; Xu, B. Comparative Study of Remote Sensing Estimation Methods for Grassland Fractional Vegetation Coverage–A Grassland Case Study Performed in Ili Prefecture, Xinjiang, China. Int. J. Remote Sens. 2019, 40, 2243–2258. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, H.; Fu, Y.; Niu, H.; Yang, Y.; Zhang, B. Fractional Vegetation Cover Estimation of Different Vegetation Types in the Qaidam Basin. Sustainability 2019, 11, 864. [Google Scholar] [CrossRef]
- Miao, Z.G.; Chen, J.; Wang, C.L.; Zhang, S.H.; Ma, Y.J.; Dong, T.C.; Zhao, Y.; Shi, R.; Zhao, J. Global Dynamics of Grassland FVC and LST and Spatial Distribution of Their Correlation (2001–2022). Plants 2025, 14, 439. [Google Scholar] [CrossRef] [PubMed]
- Cunnick, H.; Ramage, J.M.; Magness, D.; Peters, S.C. Mapping Fractional Vegetation Coverage across Wetland Classes of Sub-Arctic Peatlands Using Combined Partial Least Squares Regression and Multiple Endmember Spectral Unmixing. Remote Sens. 2023, 15, 1440. [Google Scholar] [CrossRef]
- Ganju, N.K.; Couvillion, B.R.; Defne, Z.; Ackerman, K.V. Development and Application of Landsat-Based Wetland Vegetation Cover and Unvegetated-Vegetated Marsh Ratio (UVVR) for the Conterminous United States. Estuaries Coasts 2022, 45, 1861–1878. [Google Scholar] [CrossRef]
- Kang, M.P.; Zhao, C.Z.; Li, X.Y.; Ma, M.; Zhao, X.W. Temporal and Spatial Characteristics of Vegetation Coverage and Their Influencing Factors in the Sugan Lake Wetland on the Northern Margin of the Qinghai–Tibet Plateau. Front. Ecol. Evol. 2023, 11, 1097817. [Google Scholar] [CrossRef]
- Ye, X.C.; Li, Y.L.; Li, X.H.; Zhang, Q. Factors Influencing Water Level Changes in China’s Largest Freshwater Lake, Poyang Lake, in the Past 50 Years. Water Int. 2014, 39, 983–999. [Google Scholar] [CrossRef]
- Xue, C.Y.; Zhang, Q.; Jia, Y.X.; Yuan, S.Y. Intensifying Drought of Poyang Lake and Potential Recovery Approaches in the Dammed Middle Yangtze River Catchment. J. Hydrol. Reg. Stud. 2023, 50, 101548. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, F.; Chen, Y.W.; Zou, W.X.; Zhu, Z.G. Diazotrophic Community in the Sediments of Poyang Lake in Response to Water Level Fluctuations. Front. Microbiol. 2024, 15, 1324313. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Liu, Y.; He, L.; Yang, S.S.; Gong, H.Y.; Xu, R.X.; Yao, X.Z.; Ge, G. Interactive Effects of Flooding Duration and Sediment Texture on the Growth and Adaptation of Three Plant Species in the Poyang Lake Wetland. Biology 2023, 12, 944. [Google Scholar] [CrossRef]
- Lai, X.H.; Zeng, H.; Zhao, X.M.; Shao, Y.W.; Guo, X. Impact of Extreme Drought on Vegetation Greenness in Poyang Lake Wetland. Forests 2024, 15, 1756. [Google Scholar] [CrossRef]
- Ma, S.; Ren, J.L.; Wu, C.L.; He, Q. Extreme Precipitation Events Trigger Abrupt Vegetation Succession in Emerging Coastal Wetlands. Catena 2024, 241, 108066. [Google Scholar] [CrossRef]
- He, S.; Xu, J.J.; Yi, Y.J.; Zhang, E.Z. Variations in Aquatic Vegetation Diversity Responses to Water Level Sequences during Drought in Lakes under Uncertain Conditions. Water 2023, 15, 2395. [Google Scholar] [CrossRef]
- Ma, M.; Ma, Z.; Du, G. Effects of Water Level on Three Wetlands Soil Seed Banks on the Tibetan Plateau. PLoS ONE 2014, 9, e101458. [Google Scholar] [CrossRef] [PubMed]
- Byrd, K.B.; Lorenz, A.A.; Anderson, J.A.; Wallace, C.S.A.; Leary, K.A.M.; Isola, J.; Ortega, R.; Reiter, M. Quantifying Drought’s Influence on Moist Soil Seed Vegetation in California’s Central Valley through Remote Sensing. Ecol. Appl. 2020, 30, e02153. [Google Scholar] [CrossRef] [PubMed]
- Long, K.E.; Schneider, L.; Connor, S.E.; Shulmeister, N.; Finn, J.; Roberts, G.L.; Zawadzki, A.; Enge, T.G.; Smol, J.P.; Ballard, C.; et al. Human Impacts and Anthropocene Environmental Change at Lake Kutubu, a Ramsar Wetland in Papua New Guinea. Proc. Natl. Acad. Sci. USA 2021, 118, e2022216118. [Google Scholar] [CrossRef] [PubMed]
- Loiselle, A.; Proulx, R.; Larocque, M.; Pellerin, S. Resilience of Lake-Edge Wetlands to Water Level Changes in a Southern Boreal Lake. Wetl. Ecol. Manag. 2021, 29, 867–888. [Google Scholar] [CrossRef]
- Pal, S.; Singha, P. Linking River Flow Modification with Wetland Hydrological Instability, Habitat Condition, and Ecological Responses. Environ. Sci. Pollut. Res. 2023, 30, 11634–11660. [Google Scholar] [CrossRef]
- Meeker, J.E.; Wilcox, D.A.; Harris, A.G. Changes in Wetland Vegetation in Regulated Lakes in Northern Minnesota, USA Ten Years after a New Regulation Plan Was Implemented. Wetlands 2018, 38, 437–449. [Google Scholar] [CrossRef]
- Wu, J.D.; Li, F.S. Study on the Relationship Between the Behavioral Choices of Wintering Waterbirds and Water Level as Well as Food Availability. In Annual Monitoring Report of Natural Resources of Poyang Lake National Nature Reserve in 2010; Zhu, Q., Liu, G.H., Wu, J.D., Eds.; Fudan University Press: Shanghai, China, 2011; pp. 100–109. [Google Scholar]
- Ding, H.F.; Chen, Q.; Wang, Y.F.; Zhu, Z.W.; Zhou, H.Y.; Wang, W.J. Interspecific Relationships between Tundra Swans Cygnus columbianus and Siberian Cranes Leucogeranus leucogeranus in the Lotus Ponds Reclamation Area around Poyang Lake. Chin. J. Zool. 2024, 59, 161–171. (In Chinese) [Google Scholar]
- Xu, Z.W.; Hu, L.; Yu, D.K.; Xiong, C.Y.; Wang, S.Q.; Hao, N.Z.; Yu, C.; Ye, T. Monitoring of Wintering Waterbirds. In Annual Monitoring Report of Natural Resources of Poyang Lake National Nature Reserve in 2019–2020; Liu, G.H., Yu, D.K., Lu, H., Eds.; Jiangxi Science and Technology Press: Nanchang, China, 2020; pp. 125–148. [Google Scholar]
- Zhu, Q.; Yu, D.K.; Zeng, J.X.; Zeng, Q.L.; Zeng, G.H.; Xiong, X.H.; Qi, Y.B.; Tang, C.Q. Monitoring of Wintering Waterbirds by the Conversation and Management Stations of Poyang Lake National Nature Reserve. In Annual Monitoring Report of Natural Resources of Poyang Lake National Nature Reserve in 2020–2021; Zhu, Q., Liu, G.H., Gong, L.Q., Eds.; Jiangxi Science and Technology Press: Nanchang, China, 2021; pp. 116–132. [Google Scholar]
- Xu, Z.W.; Yu, D.K.; Mei, Y.; Yu, J.P.; Yang, R.X.; Qiu, W.H.; Hong, R.; Luo, H. Monitoring of Wintering Waterbirds by the Conversation and Management Stations of Poyang Lake National Nature Reserve. In Annual Monitoring Report of Natural Resources of Poyang Lake National Nature Reserve in 2021–2022; Zhu, Q., Liu, G.H., Gong, L.Q., Eds.; Jiangxi Science and Technology Press: Nanchang, China, 2022; pp. 119–132. [Google Scholar]
Type | Number of Variables | Name |
---|---|---|
Landsat-5 Spectral Bands | 6 | B2, B3, B4, B5, B6, B7 |
Landsat-5 Spectral Indices | 5 | NDVI, NDWI, BSI, MNDWI, GARI |
Sentinel-2 Spectral Bands | 9 | B2, B3, B4, B5, B6, B7, B8, B8A, B11 |
Sentinel-2 Spectral Indices | 8 | NDVI, NDWI, BSI, MNDWI, GARI, VARI, MSAVI, PSRI |
Topographic Features | 3 | elevation, slope, aspect |
Characteristics | High-Water-Level Years | Low-Water-Level Years | |||||||
---|---|---|---|---|---|---|---|---|---|
Year | 2010 | 2012 | 2015 | 2016 | 2020 | 2004 | 2006 | 2009 | 2022 |
GC DSLs Annual Average FVC | 0.379 | 0.429 | 0.417 | 0.413 | 0.430 | 0.508 | 0.480 | 0.528 | 0.477 |
Non-GC DSLs Annual Average FVC | 0.422 | 0.459 | 0.509 | 0.484 | 0.490 | 0.454 | 0.452 | 0.466 | 0.443 |
FVC Difference | −0.043 | −0.030 | −0.093 | −0.071 | −0.061 | 0.053 | 0.028 | 0.062 | 0.034 |
Xingzi Station water levels | 11.95 | 11.87 | 11.11 | 12.03 | 11.95 | 10.27 | 9.68 | 9.92 | 9.29 |
Characteristics | Benghu Lake (km2) | Dahuchi Lake (km2) | Shahu Lake (km2) | Changhuchi Lake (km2) |
---|---|---|---|---|
mean | 36.74 | 19.46 | 6.59 | 2.06 |
min | 0.72 | 0.70 | 0.70 | 0.14 |
max | 83.74 | 34.27 | 14.69 | 4.01 |
CV | 0.72 | 0.35 | 0.47 | 0.47 |
Monitoring Period | Monthly Average of the Maximum Counts (Migratory Birds) | Monitoring Period | Maximum Counts (Siberian Crane) |
---|---|---|---|
2019/10–2020/3 | 232,800 | 8 November 2019 | 1673 |
2020/10–2021/3 | 180,800 | 28 December 2020 | 575 |
2021/10–2022/3 | 240,600 | 28 November 2021 | 634 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Hu, T.; Chen, L.-G.; Lu, H.; Chen, L.-M.; Luan, Z.; Jin, Q.; Shi, Y. Impacts of Extreme Flood and Drought Events on Dish-Shaped Lake Habitats in Poyang Lake Under Altered Hydrological Regimes. Remote Sens. 2025, 17, 1936. https://doi.org/10.3390/rs17111936
Xu Y, Hu T, Chen L-G, Lu H, Chen L-M, Luan Z, Jin Q, Shi Y. Impacts of Extreme Flood and Drought Events on Dish-Shaped Lake Habitats in Poyang Lake Under Altered Hydrological Regimes. Remote Sensing. 2025; 17(11):1936. https://doi.org/10.3390/rs17111936
Chicago/Turabian StyleXu, Yifan, Tengfei Hu, Lian-Gang Chen, Hao Lu, Li-Ming Chen, Zhenyu Luan, Qiu Jin, and Yong Shi. 2025. "Impacts of Extreme Flood and Drought Events on Dish-Shaped Lake Habitats in Poyang Lake Under Altered Hydrological Regimes" Remote Sensing 17, no. 11: 1936. https://doi.org/10.3390/rs17111936
APA StyleXu, Y., Hu, T., Chen, L.-G., Lu, H., Chen, L.-M., Luan, Z., Jin, Q., & Shi, Y. (2025). Impacts of Extreme Flood and Drought Events on Dish-Shaped Lake Habitats in Poyang Lake Under Altered Hydrological Regimes. Remote Sensing, 17(11), 1936. https://doi.org/10.3390/rs17111936