Nitrate Content in Open Field Spinach, Applicative Case for Hyperspectral Reflectance Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Reflectance Measurements
2.3. Nitrate Content Determination
2.4. Data Modelling and Statistics
2.4.1. Feature Selection Methods
2.4.2. Classification Models
2.4.3. Models’ Evaluation
3. Results
3.1. Nitrate Distribution
3.2. Selection of Important Features
3.3. Base Models
3.4. Ensemble Techniques
3.5. Use Case Demonstration
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalmpourtzidou, A.; Eilander, A.; Talsma, E.F. Global vegetable intake and supply compared to recommendations: A systematic review. Nutrients 2020, 12, 1558. [Google Scholar] [CrossRef] [PubMed]
- Mandracchia, F.; Llauradó, E.; Tarro, L.; del Bas, J.M.; Valls, R.M.; Pedret, A.; Radeva, P.; Arola, L.; Solà, R.; Boqué, N. Potential use of mobile phone applications for self-monitoring and increasing daily fruit and vegetable consumption: A systematized review. Nutrients 2019, 11, 686. [Google Scholar] [CrossRef] [PubMed]
- FAO (Food and Agriculture Organization). The Future of Food and Agriculture—Trends and Challenges; Food and Agriculture Organization: Rome, Italy, 2017; ISBN 978-92-5-109551-5. [Google Scholar]
- Li, N.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Wang, Y.; Wu, C.; Rao, Z.; Du, L.; Zhao, R.; et al. Green leafy vegetable and lutein intake and multiple health outcomes. Food Chem. 2021, 360, 130145. [Google Scholar] [CrossRef]
- Gorenjak, H.A.; Cencič, A. Nitrate in vegetables and their impact on human health. A review. Acta Aliment. 2013, 42, 158–172. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Ingested nitrate and nitrite, and cyanobacterial peptide toxins. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2010; Volume 94. Available online: https://www.ncbi.nlm.nih.gov/books/NBK326544/ (accessed on 16 January 2025).
- Bondonno, C.P.; Zhong, L.; Bondonno, N.P.; Sim, M.; Blekkenhorst, L.C.; Liu, A.; Rajendra, A.; Pokharel, P.; Erichsen, D.W.; Neubauer, O.; et al. Nitrate: The Dr. Jekyll and Mr. Hyde of human health? Trends Food Sci. Technol. 2023, 135, 57–73. [Google Scholar] [CrossRef]
- Apte, M.; Nadavade, N.; Sheikh, S.S. A review on nitrates’ health benefits and disease prevention. Nitric Oxide 2024, 142, 1–15. [Google Scholar] [CrossRef]
- Tan, L.; Stagg, L.; Hanlon, E.; Li, T.; Fairley, A.M.; Siervo, M.; Matu, J.; Griffiths, A.; Shannon, O.M. Associations between Vegetable Nitrate Intake and Cardiovascular Disease Risk and Mortality: A Systematic Review. Nutrients 2024, 16, 1511. [Google Scholar] [CrossRef]
- Hambrige, T. Nitrate and Nitrite. In WHO Food Additives Series 50; World Health Organization: Geneva, Switzerland, 2003; Volume 50. [Google Scholar]
- EU (European Union). Commission Regulation (EC) No 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006 (Text with EEA Relevance). The Official Journal of the European Union. 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32023R0915 (accessed on 25 May 2025).
- FAO (Food and Agriculture Organization). Online Statistical Database. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 11 January 2025).
- Luetic, S.; Knezovic, Z.; Jurcic, K.; Majic, Z.; Tripkovic, K.; Sutlovic, D. Leafy vegetable nitrite and nitrate content: Potential health effects. Foods 2023, 12, 1655. [Google Scholar] [CrossRef]
- Ciriello, M.; Campana, E.; De Pascale, S.; Rouphael, Y. Implications of Vegetal Protein Hydrolysates for Improving Nitrogen Use Efficiency in Leafy Vegetables. Horticulturae 2024, 10, 132. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Y.; Cai, Y.; Song, Y.; Yin, Y.; Gong, L. Inhibition of nitrate accumulation in vegetable by Chroococcus sp. and related mechanisms. Rhizosphere 2024, 31, 100934. [Google Scholar] [CrossRef]
- Agusta, H.; Kartika, J.G.; Sari, K.R. Nitrate concentration and accumulation on vegetables related to altitude and sunlight intensity. IOP Conf. Ser. Earth Environ. Sci. 2021, 896, 012052. [Google Scholar] [CrossRef]
- van Es, H.; Woodard, J. Innovation in Agriculture and Food Systems in the Digital Age. In The Global Innovation Index; Dutta, S., Lanvin, B., Wunsch-Vincent, S., Eds.; World Intellectual Property Organization: Geneva, Switzerland, 2017; pp. 97–104. [Google Scholar]
- Hong, Y.; Lee, J.; Park, S.; Kim, J.; Jang, K.J. Next-Generation Nitrate, Ammonium, Phosphate, and Potassium Ion Monitoring System in Closed Hydroponics: Review on State-of-the-Art Sensors and Their Applications. Agric. Eng. 2024, 6, 4786–4811. [Google Scholar] [CrossRef]
- Parks, S.E.; Irving, D.E.; Milham, P.J. A critical evaluation of on-farm rapid tests for measuring nitrate in leafy vegetables. Sci. Hortic. 2012, 134, 1–6. [Google Scholar] [CrossRef]
- Chowdhury, M.; Khura, T.K.; Parray, R.A.; Kushwaha, H.L.; Upadhyay, P.K.; Jha, A.; Patra, K.; Kushwah, A.; Prajapati, V.K. The use of destructive and nondestructive techniques in concrete nitrogen assessment in plants. J. Plant Nutr. 2024, 47, 2271–2294. [Google Scholar] [CrossRef]
- Zhu, B.; Jonathan, H. A Review of Image Sensors Used in Near-Infrared and Shortwave Infrared Fluorescence Imaging. Sensors 2024, 24, 3539. [Google Scholar] [CrossRef]
- Sabzi, S.; Pourdarbani, R.; Rohban, M.H.; Fuentes-Penna, A.; Hernández-Hernández, J.L.; Hernández-Hernández, M. Classification of cucumber leaves based on nitrogen content using the hyperspectral imaging technique and majority voting. Plants 2021, 10, 898. [Google Scholar] [CrossRef]
- Jamshidi, B.; Yazdanfar, N. Development of a spectroscopic approach for non-destructive and rapid screening of cucumbers based on maximum limit of nitrate accumulation. J. Food Compos. Anal. 2022, 110, 104513. [Google Scholar] [CrossRef]
- Matteini, P.; Distefano, C.; de Angelis, M.; Agati, G. Assessment of Nitrate Levels in Greenhouse-Grown Spinaches by Raman Spectroscopy: A Tool for Sustainable Agriculture and Food Security. Pre-Print Article. 2024. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5002503 (accessed on 11 January 2025).
- Boros, I.F.; Sipos, L.; Kappel, N.; Csambalik, L.; Fodor, M. Quantification of nitrate content with FT-NIR technique in lettuce (Lactuca sativa L.) variety types: A statistical approach. J. Food Sci. Technol. 2020, 57, 4084–4091. [Google Scholar] [CrossRef]
- Ma, F.; Du, C.; Zheng, S.; Du, Y. In Situ Monitoring of Nitrate Content in Leafy Vegetables Using Attenuated Total Reflectance—Fourier-Transform Mid-infrared Spectroscopy Coupled with Machine Learning Algorithm. Food Anal. Methods 2021, 14, 2237–2248. [Google Scholar] [CrossRef]
- Mahanti, N.K.; Chakraborty, S.K.; Kotwaliwale, N.; Vishwakarma, A.K. Chemometric strategies for nondestructive and rapid assessment of nitrate content in harvested spinach using Vis-NIR spectroscopy. J. Food Sci. 2020, 85, 3653–3662. [Google Scholar] [CrossRef]
- Stagnari, F.; Polilli, W.; Campanelli, G.; Platani, C.; Trasmundi, F.; Scortichini, G.; Galieni, A. Nitrate content assessment in spinach: Exploring the potential of spectral reflectance in open field experiments. Agronomy 2023, 13, 193. [Google Scholar] [CrossRef]
- Mahajan, P.; Uddin, S.; Hajati, F.; Moni, M.A. Ensemble learning for disease prediction: A review. Healthcare 2023, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Zheng, K.; Li, Q.; Wang, J.; Geng, J.; Cao, P.; Sui, T.; Wang, X.; Du, Y. Stability competitive adaptive reweighted sampling (SCARS) and its applications to multivariate calibration of NIR spectra. Chemom. Intell. Lab. Syst. 2012, 112, 48–54. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2022. Available online: https://www.R-project.org/ (accessed on 8 July 2024).
- Kalinowski, T.; Allaire, J.; Chollet, F. _keras3: R Interface to ‘Keras’_. R Package Version 1.2.0. 2024. Available online: https://CRAN.R-project.org/package=keras3 (accessed on 18 November 2024).
- Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 464–472. [Google Scholar]
- Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine learning algorithm validation with a limited sample size. PLoS ONE 2019, 14, e0224365. [Google Scholar] [CrossRef]
- Sasse, L.; Nicolaisen-Sobesky, E.; Dukart, J.; Eickhoff, S.B.; Götz, M.; Hamdan, S.; Komeyer, V.; Kulkarni, A.; Lahnakoski, J.; Love, B.C.; et al. On Leakage in Machine Learning Pipelines. arXiv 2023, arXiv:2311.04179. [Google Scholar]
- Ying, X. An overview of overfitting and its solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [Google Scholar] [CrossRef]
- Naimi, A.I.; Balzer, L.B. Stacked generalization: An introduction to super learning. Eur. J. Epidemiol. 2018, 33, 459–464. [Google Scholar] [CrossRef]
- Mohammed, A.; Kora, R. A comprehensive review on ensemble deep learning: Opportunities and challenges. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 757–774. [Google Scholar] [CrossRef]
- Glas, A.S.; Lijmer, J.G.; Prins, M.H.; Bonsel, G.J.; Bossuyt, P.M. The diagnostic odds ratio: A single indicator of test performance. J. Clin. Epidemiol. 2003, 56, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Ministero della Salute. Informativa sul Controllo Ufficiale dei Contaminanti Agricoli e delle Tossine Vegetali Negli Alimenti Oggetto di Campionamento nell’anno 2022; Piano Nazionale di Controllo Ufficiale dei Contaminanti Agricoli e Tossine Vegetali negli Alimenti. Available online: https://www.salute.gov.it/imgs/C_17_pubblicazioni_3444_allegato.pdf (accessed on 10 December 2024).
- Lin, C.; Tsogt, K.; Chang, C.I. An empirical model-based method for signal restoration of SWIR in ASD field spectroradiometry. Photogramm. Eng. Remote Sens. 2012, 78, 119–127. [Google Scholar] [CrossRef]
- Yang, H.Y.; Inagaki, T.; Ma, T.; Tsuchikawa, S. High-resolution and non-destructive evaluation of the spatial distribution of nitrate and its dynamics in spinach (Spinacia oleracea L.) leaves by near-infrared hyperspectral imaging. Front. Plant Sci. 2017, 8, 1937. [Google Scholar] [CrossRef]
- Kröckel, L.; Schwotzer, G.; Lehmann, H.; Wieduwilt, T. Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components. Water Res. 2011, 45, 1423–1431. [Google Scholar] [CrossRef]
- Prasad, A.; Kumar, A.; Matsuoka, R.; Takahashi, A.; Fujii, R.; Sugiura, Y.; Kikuchi, H.; Aoyagi, S.; Aikawa, T.; Kondo, T.; et al. Real-time monitoring of superoxide anion radical generation in response to wounding: Electrochemical study. Peer J. 2017, 5, e3050. [Google Scholar] [CrossRef]
- Clark, B.J.; Prioul, J.L.; Couderc, H. The physiological response to cutting in Italian ryegrass. Grass Forage Sci. 1977, 32, 1–5. [Google Scholar] [CrossRef]
- Kuleshova, T.E.; Seredin, I.S.; Cheglov, S.A.; Blashenkov, M.N.; Chumachenko, A.V.; Feofanov, S.V.; Kiradiev, V.K.; Odnoblyudov, M.A. Spectrometric method for measuring light absorption by plant leaves. J. Phys. Conf. Ser. 2018, 1135, 012013. [Google Scholar] [CrossRef]
- Lee, M.; Huang, Y.; Yao, H.; Thomson, S.J.; Bruce, L.M. Effects of sample storage on spectral reflectance changes in corn leaves excised from the field. J. Agric. Sci. 2014, 6, 214. [Google Scholar] [CrossRef]
- Bejani, M.M.; Ghatee, M. A systematic review on overfitting control in shallow and deep neural networks. Artif. Intell. Rev. 2021, 54, 6391–6438. [Google Scholar] [CrossRef]
- Varoquaux, G.; Raamana, P.R.; Engemann, D.A.; Hoyos-Idrobo, A.; Schwartz, Y.; Thirion, B. Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines. NeuroImage 2017, 145, 166–179. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Giraud-Carrier, C. Diversity, accuracy and efficiency in ensemble learning: An unexpected result. Intell. Data Anal. 2019, 23, 297–311. [Google Scholar] [CrossRef]
- Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Chen, S.; Hu, T.; Luo, L.; He, Q.; Zhang, S.; Lu, J. Prediction of nitrogen, phosphorus, and potassium contents in apple tree leaves based on in-situ canopy hyperspectral reflectance using stacked ensemble extreme learning machine model. J. Soil Sci. Plant Nutr. 2021, 22, 10–24. [Google Scholar] [CrossRef]
- Huang, X.; Guan, H.; Bo, L.; Xu, Z.; Mao, X. Hyperspectral proximal sensing of leaf chlorophyll content of spring maize based on a hybrid of physically based modelling and ensemble stacking. Comput. Electron. Agric. 2023, 208, 107745. [Google Scholar] [CrossRef]
- EU (European Union). Commission Regulation (EC) No 852/2004 of 25 April 2023 on the hygiene of foodstuffs. Off. J. Eur. Union 2004, L139, 82004. [Google Scholar]
Parameters | Equation |
---|---|
Acc | ((TP + TN))⁄((TP + TN + FP + FN)) |
LR+ | (TP/((TP + FN)))⁄(1 − TN/((TN + FP))) |
DOR | (LR+)⁄(LR−) |
Odds (post)+ | Odds(pre) LR+ |
P(post)+ | (Odds(post)+)⁄((1 + Odds(post)+)) |
† P(reg)+ | 2 P(pre) § P(post)+ |
K | (2(TP TN − FN FP))⁄(((TP + FP)(FP + TN) + (TP + FN)(FN + TN))) |
LR− | ((1 − TP/((TP + FN))))⁄(TN/((TN + FP))) |
Odds(pre) | (P(pre))⁄((1 − P(pre))) |
Odds(post)− | Odds(pre) LR− |
P(post)− | (Odds(post)−)⁄((1 + Odds(post)−)) |
P(reg)− | 1 − (2 P(pre) P(post)−) |
Feature Selection | Acc | Neurons | K | Neurons | DOR | Neurons | LR+ | Neurons | LR− | Neurons |
---|---|---|---|---|---|---|---|---|---|---|
FULL | 0.83 | 75 | 0.65 | 75 | 27.0 | 75 | 4.06 | 75 | 0.150 | 75 |
CARS | 0.80 | 25;30;35 | 0.60 | 30;35 | 20.6 | 25 | 5.70 | 25 | 0.225 | 35 |
SCARS | 0.83 | 30 | 0.65 | 30 | 34.3 | 35 | 9.63 | 35 | 0.216 | 50 |
EN | 0.75 | 15;30 | 0.50 | 30 | Inf;10.3 | 10;15 | 3.09 | 30 | 0;0.278 | 10;15 |
CARSplus | 0.75 | 20 | 0.51 | 20 | 13.8 | 20 | 5.10 | 20 | 0.369 | 20 |
SCARSplus | 0.83 | 25 | 0.65 | 25 | 26.6 | 25 | 6.33 | 25 | 0.238 | 25 |
ENplus | 0.73 | 6;8;30 | 0.44 | 6;8;30 | 18.0 | 30 | 6.67 | 30 | 0.353 | 8 |
Technique | Predictors | Acc | Neurons | K | Neurons | DOR | Neurons | LR+ | Neurons | LR− | Neurons | P(reg)+ | Neurons | P(reg)− | Neurons |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MV | All | 0.82 | - | 0.63 | - | 50.0 | - | 12.88 | - | 0.258 | - | 4.28% | - | 99.1% | - |
MV | Plus | 0.78 | - | 0.55 | - | 35.0 | - | 10.71 | - | 0.306 | - | 4.22% | - | 98.9% | - |
Stacked generalization | All | 0.88 | 16 | 0.76 | 16 | 95.0 | 16 | 20.58 | 16 | 0.148 | 9 | 4.35% | 16 | 99.4% | 8;9 |
Stacked generalization | Plus | 0.88 | 10 | 0.68 | 20 | 60.7 | 20 | 18.42 | 20 | 0.250 | 10 | † 4.60% | 10 | 99.3% | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polilli, W.; Galieni, A.; Stagnari, F. Nitrate Content in Open Field Spinach, Applicative Case for Hyperspectral Reflectance Data. Remote Sens. 2025, 17, 1873. https://doi.org/10.3390/rs17111873
Polilli W, Galieni A, Stagnari F. Nitrate Content in Open Field Spinach, Applicative Case for Hyperspectral Reflectance Data. Remote Sensing. 2025; 17(11):1873. https://doi.org/10.3390/rs17111873
Chicago/Turabian StylePolilli, Walter, Angelica Galieni, and Fabio Stagnari. 2025. "Nitrate Content in Open Field Spinach, Applicative Case for Hyperspectral Reflectance Data" Remote Sensing 17, no. 11: 1873. https://doi.org/10.3390/rs17111873
APA StylePolilli, W., Galieni, A., & Stagnari, F. (2025). Nitrate Content in Open Field Spinach, Applicative Case for Hyperspectral Reflectance Data. Remote Sensing, 17(11), 1873. https://doi.org/10.3390/rs17111873