An Evaluation of Sentinel-3 SYN VGT Products in Comparison to the SPOT/VEGETATION and PROBA-V Archives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Sentinel-3 SYN VGT V10
- September 2019: The correction of a 0.5-pixel displacement in latitude and longitude directions in product gridding. Measurements are provided on the same regular latitude–longitude grid as previous SPOT VGT and 1 km PROBA-V products with an equatorial sampling distance of approximately 1 km (1°/112).
- June 2020: The alignment of the temporal compositing scheme of 1-day and 10-day synthesis products with previous SPOT VGT and PROBA-V products. Per month, three V10 products are provided based on observations in days 1–10, days 11–20 and day 21 to the end of the month, respectively.
- June 2021: Correction in the definitions of VG1 and V10 NDVI to be based on surface reflectance in the RED and NIR bands. Until May 2021, NDVI products were erroneously based on top-of-atmosphere (TOA) reflectances.
- August/September 2022: Improved handling of saturated values.
- July 2023: The last important update includes two aspects, namely (i) correction in the spectral band mapping procedure and (ii) S3A/OLCI and SLSTR calibration adjustments. The first aspect includes a change to the use of PROBA-V spectral response functions (instead of SPOT4/VGT1) in the spectral band mapping procedure. Although differences between the spectral responses between SPOT VGT and PROBA-V are rather small [3], this change has a slight impact on the retrievals in the RED and SWIR bands. A much larger impact is induced by the implementation of important bug fixes, including the correct exclusion of atmospheric absorption bands and the correct handling of wavelength units. The second aspect includes the application of a 2% calibration bias correction on S3A OLCI, as evidenced through the tandem phase study [19], and the application of the Sentinel-3 SLSTR vicarious calibration adjustments [20].
- Period 1 (P1): June 2020–May 2021;
- Period 2 (P2): August 2021–July 2022;
- Period 3 (P3): August 2023–July 2024.
2.1.2. SPOT VGT Collection 3 Level 3 S10-TOC
2.1.3. PROBA-V Collection 2 Level 3 S10-TOC
2.1.4. LSA-SAF METOP/AVHRR ENDVI10 Version 2
2.2. Methods
2.2.1. Sampling
2.2.2. Long-Term Statistics
2.2.3. Geometric Mean Regression and Coefficient of Determination (R2)
2.2.4. APU Metrics
2.2.5. Hovmöller Diagrams
3. Results and Discussion
3.1. Spatio-Temporal Intercomparison with LSA-SAF ENDVI10
3.2. Intercomparison with VGT-C3 and PV-C2 LTS for P1, P2 and P3
3.3. The Current Consistency Level between Sentinel-3 SYN V10 Products and the SPOT VGT and PROBA-V Archives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Henocq, C.; North, P.; Heckel, A.; Ferron, S.; Lamquin, N.; Dransfeld, S.; Bourg, L.; Toté, C.; Ramon, D. OLCI/SLSTR SYN L2 Algorithm and Products Overview. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium IEEE, Valencia, Spain, 22–27 July 2018; Volume 16, pp. 8723–8726. [Google Scholar]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 Mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Francois, M.; Santandrea, S.; Mellab, K.; Vrancken, D.; Versluys, J. The PROBA-V Mission: The Space Segment. Int. J. Remote Sens. 2014, 35, 2548–2564. [Google Scholar] [CrossRef]
- Dierckx, W.; Sterckx, S.; Benhadj, I.; Livens, S.; Duhoux, G.; Van Achteren, T.; Francois, M.; Mellab, K.; Saint, G. PROBA-V Mission for Global Vegetation Monitoring: Standard Products and Image Quality. Int. J. Remote Sens. 2014, 35, 2589–2614. [Google Scholar] [CrossRef]
- Toté, C.; Swinnen, E.; Sterckx, S.; Benhadj, I.; Dierckx, W.; Gomez-Chova, L.; Ramon, D.; Stelzer, K.; Van den Heuvel, L.; Clarijs, D.; et al. The Reprocessed Proba-V Collection 2: Product Validation. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS IEEE, Brussels, Belgium, 11–16 July 2021; pp. 8084–8086. [Google Scholar]
- Toté, C.; Swinnen, E.; Van Den Heuvel, L.; Clarijs, D. Evaluation of PROBA-V C2 Products Final Report. 2023. Available online: https://proba-v.vgt.vito.be/sites/probavvgt/files/downloads/PROBA-V_C2_Evaluation.pdf (accessed on 16 February 2024).
- Wolters, E.; Swinnen, E.; Toté, C.; Sterckx, S. SPOT-VGT Collection 3 Products User Manual. 2016. VITO. Available online: https://publications.vito.be/2016-1034-spotvgt-collection-3-products-user-manual-v10.pdf (accessed on 29 June 2016).
- Wolters, E.; Toté, C.; Dierckx, W.; Paepen, M.; Swinnen, E. PROBA-V Collection 2 Products User Manual; VITO: Mol, Belgium, 2023; Available online: https://proba-v.vgt.vito.be/sites/probavvgt/files/downloads/PROBA-V_C2_Products_User_Manual.pdf (accessed on 30 June 2023).
- Pelloquin, C.; Nieke, J. Sentinel-3 OLCI and SLSTR Simulated Spectral Response Functions. 2012. Available online: https://sentinel.esa.int/documents/247904/322304/SRF_modelled_Pelloquin_et_al/b713b12a-723c-49f2-94db-af480870facf (accessed on 10 February 2024).
- Skakun, S.; Justice, C.O.; Vermote, E.; Roger, J.C. Transitioning from MODIS to VIIRS: An Analysis of Inter-Consistency of NDVI Data Sets for Agricultural Monitoring. Int. J. Remote Sens. 2018, 39, 971–992. [Google Scholar] [CrossRef]
- Latifovic, R.; Pouliot, D.; Dillabaugh, C. Identification and Correction of Systematic Error in NOAA AVHRR Long-Term Satellite Data Record. Remote Sens. Environ. 2012, 127, 84–97. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Straka, W.C.; Molling, C.C.; Sullivan, J.T.; Wu, X. Deriving an Inter-Sensor Consistent Calibration for the AVHRR Solar Reflectance Data Record. Int. J. Remote Sens. 2010, 31, 6493–6517. [Google Scholar] [CrossRef]
- Santamaria-Artigas, A.; Vermote, E.F.; Franch, B.; Roger, J.C.; Skakun, S. Evaluation of the AVHRR Surface Reflectance Long Term Data Record between 1984 and 2011. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102317. [Google Scholar] [CrossRef]
- Cao, C.; Xiong, X.; Wu, A.; Wu, X. Assessing the Consistency of AVHRR and MODIS L1B Reflectance for Generating Fundamental Climate Data Records. J. Geophys. Res. Atmos. 2008, 113, D09114. [Google Scholar] [CrossRef]
- Brown, M.E.; Pinzón, J.E.; Didan, K.; Morisette, J.T.; Tucker, C.J. Evaluation of the Consistency of Long-Term NDVI Time Series Derived from AVHRR, SPOT-Vegetation, SeaWiFS, MODIS, and Landsat ETM+ Sensors. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1787–1793. [Google Scholar] [CrossRef]
- Ji, L.; Gallo, K.; Eidenshink, J.C.; Dwyer, J. Agreement Evaluation of AVHRR and MODIS 16-Day Composite NDVI Data Sets. Int. J. Remote Sens. 2008, 29, 4839–4861. [Google Scholar] [CrossRef]
- Swinnen, E.; Veroustraete, F. Extending the SPOT-VEGETATION NDVI Time Series (1998–2006) Back in Time With NOAA-AVHRR Data (1985–1998) for Southern Africa. IEEE Trans. Geosci. Remote Sens. 2008, 46, 558–572. [Google Scholar] [CrossRef]
- North, P.; Heckel, A. SYN Algorithm Theoretical Basis Document. 2010. Available online: https://earth.esa.int/documents/247904/349589/SYN_L2-3_ATBD.pdf (accessed on 21 September 2017).
- Clerc, S.; Donlon, C.; Borde, F.; Lamquin, N.; Hunt, S.E.; Smith, D.; McMillan, M.; Mittaz, J.; Woolliams, E.; Hammond, M.; et al. Benefits and Lessons Learned from the Sentinel-3 Tandem Phase. Remote Sens. 2020, 12, 2668. [Google Scholar] [CrossRef]
- S3-MPC. Sentinel-3 SLSTR VIS and SWIR Channel Vicarious Calibration Adjustments. 2021. Available online: https://sentinels.copernicus.eu/documents/247904/4620074/Sentinel-3-SLSTR-VIS-and-SWIR-Channel-Vicarious-Calibration-Adjustments.pdf/fef9161b-29d1-0578-0a7a-60246433a910 (accessed on 23 August 2024).
- Toté, C.; Swinnen, E.; Sterckx, S.; Clarijs, D.; Quang, C.; Maes, R. Evaluation of the SPOT/VEGETATION Collection 3 Reprocessed Dataset: Surface Reflectances and NDVI. Remote Sens. Environ. 2017, 201, 219–233. [Google Scholar] [CrossRef]
- Galvao, L.S.; Ponzoni, F.J.; Epiphanio, J.C.N.; Rudorff, B.F.T.; Formaggio, A.R. Sun and View Angle Effects on NDVI Determination of Land Cover Types in the Brazilian Amazon Region with Hyperspectral Data. Int. J. Remote Sens. 2004, 25, 1861–1879. [Google Scholar] [CrossRef]
- Sellers, P.J. Canopy Reflectance, Photosynthesis and Transpiration. Int. J. Remote Sens. 1985, 6, 1335–1372. [Google Scholar] [CrossRef]
- Swinnen, E.; Verbeiren, S.; Deronde, B.; Henry, P. Assessment of the Impact of the Orbital Drift of SPOT-VGT1 by Comparison with SPOT-VGT2 Data. Int. J. Remote Sens. 2014, 35, 2421–2439. [Google Scholar] [CrossRef]
- Sterckx, S.; Benhadj, I.; Duhoux, G.; Livens, S.; Dierckx, W.; Goor, E.; Adriaensen, S.; Heyns, W.; Van Hoof, K.; Strackx, G.; et al. The PROBA-V Mission: Image Processing and Calibration. Int. J. Remote Sens. 2014, 35, 2565–2588. [Google Scholar] [CrossRef]
- Eerens, H.; Baruth, B.; Bydekerke, L.; Deronde, B.; Dries, J.; Goor, E.; Heyns, W.; Jacobs, T.; Ooms, B.; Piccard, I.; et al. Ten-Daily Global Composites of METOP-AVHRR. In Proceedings of the Sixth International Symposium on Digital Earth: Data Processing and Applications, Beijing, China, 9–12 September 2009; Volume 7841, pp. 8–13. [Google Scholar] [CrossRef]
- Duveiller, G.; Fasbender, D.; Meroni, M. Revisiting the Concept of a Symmetric Index of Agreement for Continuous Datasets. Sci. Rep. 2016, 6, 19401. [Google Scholar] [CrossRef]
- Vermote, E.F.; Kotchenova, S. Atmospheric Correction for the Monitoring of Land Surfaces. J. Geophys. Res. Atmos. 2008, 113, D23S90. [Google Scholar] [CrossRef]
- Claverie, M.; Vermote, E.F.; Franch, B.; Masek, J.G. Evaluation of the Landsat-5 TM and Landsat-7 ETM+ Surface Reflectance Products. Remote Sens. Environ. 2015, 169, 390–403. [Google Scholar] [CrossRef]
- Meroni, M.; Atzberger, C.; Vancutsem, C.; Gobron, N.; Baret, F.; Lacaze, R.; Eerens, H.; Leo, O. Evaluation of Agreement between Space Remote Sensing SPOT-VEGETATION FAPAR Time Series. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1951–1962. [Google Scholar] [CrossRef]
- Eklundh, L. Noise Estimation in NOAA AVHRR Maximum-Value Composite NDVI Images. Int. J. Remote Sens. 1995, 16, 2955–2962. [Google Scholar] [CrossRef]
- Niro, F. Evaluation of Orbital Drift Effect on Proba-v Surface Reflectances Time Series. Remote Sens. 2021, 13, 2250. [Google Scholar] [CrossRef]
- Nagol, J.; Vermote, E.; Prince, S. Quantification of Impact of Orbital Drift on Inter-Annual Trends in AVHRR NDVI Data. Remote Sens. 2014, 6, 6680–6687. [Google Scholar] [CrossRef]
- León-Tavares, J.; Roujean, J.L.; Smets, B.; Wolters, E.; Toté, C.; Swinnen, E. Correction of Directional Effects in Vegetation Ndvi Time-Series. Remote Sens. 2021, 13, 1130. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of Maximum-Value Composite Images from Temporal AVHRR Data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Maisongrande, P.; Duchemin, B.; Dedieu, G. VEGETATION/SPOT: An Operational Mission for the Earth Monitoring; Presentation of New Standard Products. Int. J. Remote Sens. 2004, 25, 9–14. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- North, P.R.J.; Brockmann, C.; Preusker, R.; North, P.; Fischer, J.; Gomez-Chova, L.; Grey, W.; Heckel, A.; Moreno, J.; Preusker, R.; et al. MERIS/AATSR Synergy Algorithms for Cloud Screening, Aerosol Retrieval, and Atmospheric Correction. In Proceedings of the 2nd MERIS/(A)ATSR User Workshop; ESRIN, Frascati, Italy, 22–26 September 2008; pp. 22–26. [Google Scholar]
- Wolters, E.; Toté, C.; Sterckx, S.; Adriaensen, S.; Henocq, C.; Bruniquel, J.; Scifoni, S.; Dransfeld, S. Icor Atmospheric Correction on Sentinel-3/OLCI over Land: Intercomparison with Aeronet, Radcalnet, and Syn Level-2. Remote Sens. 2021, 13, 654. [Google Scholar] [CrossRef]
SENSOR | BLUE [nm] | RED [nm] | NIR [nm] | SWIR [µm] |
---|---|---|---|---|
SPOT4/VGT1 | 459 (43) | 658 (85) | 834 (121) | 1.649 (0.092) |
SPOT5/VGT2 | 458 (37) | 653 (74) | 838 (109) | 1.635 (0.101) |
PROBA-V | 464 (47) | 655 (82) | 837 (130) | 1.603 (0.065) |
Sentinel-3/OLCI | Oa03: 442 (10) Oa04: 491 (10) | Oa07: 621 (10) Oa08: 666 (10) Oa09: 674 (7.5) Oa10: 682 (7.5) | Oa16: 779 (15) Oa17: 866 (20) Oa18: 886 (10) | |
Sentinel-3/SLSTR | S5: 1.610 (0.065) |
Intercomparison | Metric | BLUE | RED | NIR | SWIR | NDVI |
---|---|---|---|---|---|---|
VGT-C3 LTS vs. S3A SYN V10 | A | −0.003 | −0.024 | −0.035 | −0.022 | 0.022 |
P | 0.023 | 0.037 | 0.057 | 0.059 | 0.083 | |
U | 0.023 | 0.044 | 0.067 | 0.063 | 0.086 | |
VGT-C3 LTS vs. S3B SYN V10 | A | −0.002 | −0.024 | −0.037 | −0.020 | 0.018 |
P | 0.023 | 0.037 | 0.057 | 0.057 | 0.083 | |
U | 0.023 | 0.045 | 0.068 | 0.060 | 0.085 | |
PV-C2 LTS vs. S3A SYN V10 | A | 0.012 | −0.014 | −0.019 | −0.025 | 0.013 |
P | 0.025 | 0.036 | 0.057 | 0.056 | 0.08 | |
U | 0.028 | 0.039 | 0.06 | 0.061 | 0.081 | |
PV-C2 LTS vs. S3B SYN V10 | A | 0.012 | −0.014 | −0.021 | −0.023 | 0.009 |
P | 0.026 | 0.036 | 0.056 | 0.055 | 0.080 | |
U | 0.029 | 0.039 | 0.06 | 0.059 | 0.080 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toté, C.; Swinnen, E.; Henocq, C. An Evaluation of Sentinel-3 SYN VGT Products in Comparison to the SPOT/VEGETATION and PROBA-V Archives. Remote Sens. 2024, 16, 3822. https://doi.org/10.3390/rs16203822
Toté C, Swinnen E, Henocq C. An Evaluation of Sentinel-3 SYN VGT Products in Comparison to the SPOT/VEGETATION and PROBA-V Archives. Remote Sensing. 2024; 16(20):3822. https://doi.org/10.3390/rs16203822
Chicago/Turabian StyleToté, Carolien, Else Swinnen, and Claire Henocq. 2024. "An Evaluation of Sentinel-3 SYN VGT Products in Comparison to the SPOT/VEGETATION and PROBA-V Archives" Remote Sensing 16, no. 20: 3822. https://doi.org/10.3390/rs16203822
APA StyleToté, C., Swinnen, E., & Henocq, C. (2024). An Evaluation of Sentinel-3 SYN VGT Products in Comparison to the SPOT/VEGETATION and PROBA-V Archives. Remote Sensing, 16(20), 3822. https://doi.org/10.3390/rs16203822