Assessing and Improving the Accuracy of Visible Infrared Imaging Radiometer Suite Ocean Color Products in Environments with High Solar Zenith Angles
Abstract
:1. Introduction
2. Data and Methods
2.1. In Situ Data
2.2. Satellite Data
2.3. K-Means Clustering Analysis
2.4. Neural Network Atmospheric Correction Model
2.5. Temporal and Spatial Matching Scheme and Statistical Parameters
- (1)
- The percentage of valid pixels in the 3 × 3 window was checked. If it exceeded 50%, the data were used and otherwise discarded.
- (2)
- The mean and standard deviation (SD) of all validation pixels were calculated. Any pixel falling outside the range of the mean ± 1.5 SD was removed.
- (3)
- For the remaining pixels, the CV, calculated as SD/mean, was used to ensure spatial consistency. If the CV exceeded 0.15, the data were discarded.
3. Results
3.1. In Situ Spectral Characteristics
3.2. Overall Assessments
3.3. Annual Variation in Product Accuracy
3.4. Variation of Product Accuracy with Observation Geometry
3.5. Enhanced VIIRS Product Accuracy through Neural Network Atmospheric Correction Model
4. Discussion
4.1. Overall Performance Assessment and Annual Variation
4.2. Impact of Observation Geometry
4.3. Usage Scope of Neural Network Atmospheric Correction Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meister, G.; Franz, B.A. Corrections to the MODIS Aqua calibration derived from MODIS Aqua ocean color products. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6534–6541. [Google Scholar] [CrossRef]
- Cao, C.; Xiong, J.; Blonski, S.; Liu, Q.; Uprety, S.; Shao, X.; Weng, F. Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring. J. Geophys. Res. Atmos. 2013, 118, 11664–11678. [Google Scholar] [CrossRef]
- Uprety, S.; Cao, C. Suomi NPP VIIRS reflective solar band on-orbit radiometric stability and accuracy assessment using desert and Antarctica Dome C sites. Remote Sens. Environ. 2015, 166, 106–115. [Google Scholar] [CrossRef]
- Hlaing, S.; Harmel, T.; Gilerson, A.; Foster, R.; Weidemann, A.; Arnone, R.; Ahmed, S. Evaluation of the VIIRS ocean color monitoring performance in coastal regions. Remote Sens. Environ. 2013, 139, 398–414. [Google Scholar] [CrossRef]
- Hlaing, S.; Gilerson, A.; Foster, R.; Wang, M.; Arnone, R.; Ahmed, S. Radiometric calibration of ocean color satellite sensors using AERONET-OC data. Opt. Express 2014, 22, 23385–23401. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shi, W.; Jiang, L. Technique for monitoring performance of VIIRS reflective solar bands for ocean color data processing. Opt. Express 2015, 18, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Vandermeulen, R.A.; Arnone, R.; Ladner, S.; Martinolich, P. Enhanced satellite remote sensing of coastal waters using spatially improved bio-optical products from SNPP–VIIRS. Remote Sens. Environ. 2015, 165, 53–63. [Google Scholar] [CrossRef]
- Brando, V.E.; Lovell, J.L.; King, E.A.; Boadle, D.; Scott, R.; Schroeder, T. The potential of autonomous ship-borne hyperspectral radiometers for the validation of ocean color radiometry data. Remote Sens. 2016, 8, 150. [Google Scholar] [CrossRef]
- Barnes, B.B.; Cannizzaro, J.P.; English, D.C.; Hu, C. Validation of VIIRS and MODIS reflectance data in coastal and oceanic waters: An assessment of methods. Remote Sens. Environ. 2019, 220, 110–123. [Google Scholar] [CrossRef]
- Barnes, B.B.; Hu, C. Dependence of satellite ocean color data products on viewing angles: A comparison between SeaWiFS, MODIS, and VIIRS. Remote Sens. Environ. 2016, 175, 120–129. [Google Scholar] [CrossRef]
- Valente, A.; Sathyendranath, S.; Brotas, V.; Groom, S.; Grant, M.; Taberner, M.; Zibordi, G. A compilation of global bio-optical in situ data for ocean-colour satellite applications. Earth Syst. Sci. Data 2016, 8, 235–252. [Google Scholar] [CrossRef]
- Valente, A.; Sathyendranath, S.; Brotas, V.; Groom, S.; Grant, M.; Taberner, M.; Zibordi, G. A compilation of global bio-optical in situ data for ocean-colour satellite applications–version two. Earth Syst. Sci. Data 2019, 11, 1037–1068. [Google Scholar] [CrossRef]
- Valente, A.; Sathyendranath, S.; Brotas, V.; Groom, S.; Grant, M.; Taberner, M.; Zibordi, G. A compilation of global bio-optical in situ data for ocean colour satellite applications–version three. Earth Syst. Sci. Data 2022, 14, 5737–5770. [Google Scholar] [CrossRef]
- Morel, A.; Antoine, D.; Gentili, B. Bidirectional reflectance of oceanic waters: Accounting for Raman emission and varying particle scattering phase function. Appl. Opt. 2002, 41, 6289–6306. [Google Scholar] [CrossRef] [PubMed]
- Solidoro, C.; Bandelj, V.; Barbieri, P.; Cossarini, G.; Fonda Umani, S. Understanding dynamic of biogeochemical properties in the northern Adriatic Sea by using self-organizing maps and k-means clustering. J. Geophys. Res. Ocean. 2007, 112, C07S90. [Google Scholar] [CrossRef]
- Chen, J.; Quan, W.T.; Cui, T.W.; Song, Q.J.; Lin, C.S. Remote sensing of absorption and scattering coefficient using neural network model: Development, validation, and comparison. Remote Sens. Environ. 2014, 149, 213–226. [Google Scholar] [CrossRef]
- Chen, J.; Cui, T.W.; Joji, I.; Lin, C.S. A neural network model for remote sensing of diffuse attenuation coefficient in global oceanic waters. Remote Sens. Environ. 2014, 148, 168–177. [Google Scholar] [CrossRef]
- Li, H.; He, X.; Bai, Y.; Shanmugam, P.; Park, Y.J.; Liu, J.; Huang, H. Atmospheric correction of geostationary satellite ocean color data under high solar zenith angles in open oceans. Remote Sens. Environ. 2020, 249, 112022. [Google Scholar] [CrossRef]
- Mélin, F.; Zibordi, G.; Berthon, J.F. Assessment of satellite ocean color products at a coastal site. Remote Sens. Environ. 2007, 110, 192–215. [Google Scholar] [CrossRef]
- He, X.; Bai, Y.; Pan, D.; Huang, N.; Dong, X.; Chen, J.; Cui, Q. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters. Remote Sens. Environ. 2013, 133, 225–239. [Google Scholar] [CrossRef]
- He, X.; Bai, Y.; Pan, D.; Tang, J.; Wang, D. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters. Opt. Express 2012, 20, 20754–20770. [Google Scholar] [CrossRef] [PubMed]
- Meister, G.; Franz, B.A.; Kwiatkowska, E.J.; Mcclain, C.R. Corrections to the calibration of modis aqua ocean color bands derived from seawifs data. IEEE Trans. Geosci. Remote Sens. 2011, 50, 310–319. [Google Scholar] [CrossRef]
- Delgado, A.L.; Guinder, V.A.; Dogliotti, A.I.; Zapperi, G.; Pratolongo, P.D. Validation of modis-aqua bio-optical algorithms for phytoplankton absorption coefficient measurement in optically complex waters of EL RINCON(Argentina). Cont. Shelf Res. 2018, 173, 73–86. [Google Scholar] [CrossRef]
- Shanmugam, P. CAAS: An atmospheric correction algorithm for the remote sensing of complex waters. Ann. Geophys. 2012, 30, 203–220. [Google Scholar] [CrossRef]
- Li, H.; He, X.; Shanmugam, P.; Bai, Y.; Wang, D.; Huang, H.; Gong, F. Radiometric sensitivity and signal detectability of ocean color satellite sensor under high solar zenith angles. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8492–8505. [Google Scholar] [CrossRef]
- Ahmed, S.; Gilerson, A.; Hlaing, S.; Ioannou, I.; Wang, M.; Weidemann, A.; Arnone, R.A. Evaluation of VIIRS ocean color data using measurements from the AERONET-OC sites. Ocean Sens. Monit. 2013, 8724, 198–212. [Google Scholar]
- Li, H.; He, X.; Bai, Y.; Gong, F.; Wang, D.; Li, T. Restoration of Wintertime Ocean Color Remote Sensing Products for the High-Latitude Oceans of the Southern Hemisphere. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4212312. [Google Scholar] [CrossRef]
Bands | N | R2 | RMSD (sr−1) | APD (%) | RPD (%) | Slope |
---|---|---|---|---|---|---|
412 nm | 8312 | 0.680 | 0.0019 | 46.4 | −15.00 | 0.87 |
443 nm | 8312 | 0.695 | 0.0018 | 30.4 | −15.41 | 0.94 |
486 nm | 8312 | 0.760 | 0.0018 | 17.9 | −2.45 | 0.97 |
551 nm | 8312 | 0.660 | 0.0031 | 26.3 | −13.60 | 1.02 |
671 nm | 8312 | 0.501 | 0.0010 | 49.7 | −18.24 | 1.14 |
Years | N | R2adj | RMSD (sr−1) | APD (%) | RPD (%) | Rrs < 0.01 sr−1 APD (%) | Rrs > 0.01 sr−1 APD (%) |
---|---|---|---|---|---|---|---|
2012 | 1388 | 0.840 | 0.0013 | 16.43 | 3.25 | 16.09 | 21.10 |
2013 | 354 | 0.822 | 0.0021 | 20.01 | −6.20 | 18.48 | 24.35 |
2014 | 465 | 0.863 | 0.0015 | 16.46 | −2.26 | 16.39 | 17.56 |
2015 | 1015 | 0.786 | 0.0014 | 15.52 | −0.32 | 14.65 | 20.51 |
2016 | 1650 | 0.826 | 0.0013 | 14.49 | 0.49 | 13.85 | 21.22 |
2017 | 1472 | 0.730 | 0.0020 | 20.67 | −10.36 | 18.89 | 49.41 |
2018 | 610 | 0.748 | 0.0022 | 19.50 | 0.70 | 18.24 | 26.76 |
2019 | 889 | 0.746 | 0.0019 | 19.07 | −3.02 | 18.13 | 26.83 |
2020 | 439 | 0.779 | 0.0014 | 20.03 | −1.80 | 19.49 | 23.04 |
SZA | N | R2 | RMSD (sr−1) | APD (%) | RPD (%) | Slope |
---|---|---|---|---|---|---|
30° > SZA > 0° | 790 | 0.795 | 0.0026 | 34.96 | −17.51 | 0.86 |
40° > SZA > 30° | 790 | 0.771 | 0.0019 | 33.84 | −12.39 | 0.92 |
50° > SZA > 40° | 790 | 0.836 | 0.0012 | 29.27 | −6.26 | 0.97 |
60° > SZA > 50 ° | 790 | 0.873 | 0.0012 | 23.07 | −1.67 | 0.95 |
70° > SZA > 60° | 790 | 0.830 | 0.0014 | 33.99 | −14.07 | 0.84 |
SZA > 70° | 790 | 0.876 | 0.0020 | 48.69 | −38.59 | 0.79 |
OZA | N | R2 | RMSD (sr−1) | APD (%) | RPD (%) | Slope |
---|---|---|---|---|---|---|
20° > OZA > 0° | 970 | 0.732 | 0.0019 | 38.48 | −19.45 | 0.96 |
40° > OZA > 20° | 970 | 0.843 | 0.0015 | 34.18 | −5.39 | 0.93 |
60° > OZA > 40° | 970 | 0.717 | 0.0018 | 38.85 | −3.75 | 0.82 |
70° > OZA > 60° | 970 | 0.790 | 0.0018 | 43.42 | −21.29 | 0.74 |
Bands | N | R2 | RMSD (sr−1) | APD (%) | RPD (%) | Slope |
---|---|---|---|---|---|---|
412 nm | 680 | 0.543 | 0.0022 | 49.51 | −21.00 | 0.77 |
443 nm | 680 | 0.701 | 0.0019 | 27.90 | 10.64 | 0.84 |
486 nm | 680 | 0.831 | 0.0016 | 18.81 | 4.62 | 1.01 |
551 nm | 680 | 0.797 | 0.0017 | 18.55 | −1.23 | 0.99 |
671 nm | 680 | 0.611 | 0.0006 | 41.91 | 3.65 | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; He, X.; Shanmugam, P.; Bai, Y.; Wang, D.; Li, T.; Gong, F. Assessing and Improving the Accuracy of Visible Infrared Imaging Radiometer Suite Ocean Color Products in Environments with High Solar Zenith Angles. Remote Sens. 2024, 16, 339. https://doi.org/10.3390/rs16020339
Li H, He X, Shanmugam P, Bai Y, Wang D, Li T, Gong F. Assessing and Improving the Accuracy of Visible Infrared Imaging Radiometer Suite Ocean Color Products in Environments with High Solar Zenith Angles. Remote Sensing. 2024; 16(2):339. https://doi.org/10.3390/rs16020339
Chicago/Turabian StyleLi, Hao, Xianqiang He, Palanisamy Shanmugam, Yan Bai, Difeng Wang, Teng Li, and Fang Gong. 2024. "Assessing and Improving the Accuracy of Visible Infrared Imaging Radiometer Suite Ocean Color Products in Environments with High Solar Zenith Angles" Remote Sensing 16, no. 2: 339. https://doi.org/10.3390/rs16020339
APA StyleLi, H., He, X., Shanmugam, P., Bai, Y., Wang, D., Li, T., & Gong, F. (2024). Assessing and Improving the Accuracy of Visible Infrared Imaging Radiometer Suite Ocean Color Products in Environments with High Solar Zenith Angles. Remote Sensing, 16(2), 339. https://doi.org/10.3390/rs16020339