Relating Geotechnical Sediment Properties and Low Frequency CHIRP Sonar Measurements
Abstract
:1. Introduction
2. Methodology
2.1. CHIRP Sonar and Seismic Inversion
2.2. Physical Samples
Portable Free Fall Penetrometer (PFFP)
3. Results
3.1. Laboratory Testing
3.2. Portable Free Fall Penetrometer
3.3. CHIRP Sonar & Seismic Inversion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballard, M.S.; Lee, K.M. The acoustics of marine sediments. Acoust. Today 2017, 13, 11–18. [Google Scholar]
- Vardy, M.E. Remote characterisation of shallow marine sediments-Current status and future questions. In Proceedings of the Near Surface Geoscience 2016-Second Applied Shallow Marine Geophysics Conference, Barcelona, Spain, 4–8 September 2016; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2016; Volume 1, pp. 1–5. [Google Scholar]
- Vardy, M.E.; Vanneste, M.; Henstock, T.J.; Clare, M.A.; Forsberg, C.F.; Provenzano, G. State-of-the-art remote characterization of shallow marine sediments: The road to a fully integrated solution. Near Surf. Geophys. 2017, 15, 387–402. [Google Scholar] [CrossRef]
- Anderson, J.T.; Van Holliday, D.; Kloser, R.; Reid, D.G.; Simard, Y. Acoustic seabed classification: Current practice and future directions. ICES J. Mar. Sci. 2008, 65, 1004–1011. [Google Scholar] [CrossRef]
- Guigné, J.Y.; Blondel, P. Acoustic Investigation of Complex Seabeds; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Dybedal, J.; Boe, R. Ultra-high resolution sub-bottom profiling for detection of thin layers and objects. In Proceedings of the OCEANS’94, Brest, France, 13–16 September 1994; IEEE: Piscataway, NJ, USA, 2002; Volume 1, pp. I/634–I/638. [Google Scholar]
- Saleh, M.; Rabah, M. Seabed sub-bottom sediment classification using parametric sub-bottom profiler. NRIAG J. Astron. Geophys. 2016, 5, 87–95. [Google Scholar] [CrossRef]
- Schock, S.G. A method for estimating the physical and acoustic properties of the seabed using chirp sonar data. IEEE J. Ocean. Eng. 2004, 29, 1200–1217. [Google Scholar] [CrossRef]
- LeBlanc, L.R.; Mayer, L.; Rufino, M.; Schock, S.G.; King, J. Marine sediment classification using the CHIRP sonar. J. Acoust. Soc. Am. 1992, 91, 107–115. [Google Scholar] [CrossRef]
- Wang, J.; Stewart, R. Inferring marine sediment type using CHIRP sonar data: Atlantis field, Gulf of Mexico. In Proceedings of the SEG Technical Program Expanded Abstracts, 2015; Society of Exploration Geophysicists: Houston, TX, USA, 2015; pp. 2385–2390. [Google Scholar]
- Chen, J.; Vissinga, M.; Shen, Y.; Hu, S.; Beal, E.; Newlin, J. Machine Learning–Based Digital Integration of Geotechnical and Ultrahigh–Frequency Geophysical Data for Offshore Site Characterizations. J. Geotech. Geoenvironmental Eng. 2021, 147, 04021160. [Google Scholar] [CrossRef]
- Maurya, S.P.; Sarkar, P. Comparison of post stack seismic inversion methods: A case study from Blackfoot Field, Canada. Int. J. Sci. Eng. Res. 2016, 7, 1091–1101. [Google Scholar]
- Maurya, S.P.; Singh, N.P.; Singh, K.H. Use of genetic algorithm in reservoir characterisation from seismic data: A case study. J. Earth Syst. Sci. 2019, 128, 126. [Google Scholar] [CrossRef]
- Vardy, M.E. Deriving shallow-water sediment properties using post-stack acoustic impedance inversion. Near Surf. Geophys. 2015, 13, 143–154. [Google Scholar] [CrossRef]
- Jaber, R.; Stark, N. Initial correlation of portable free fall penetrometer and chirp sonar measurements. In Proceedings of the 5th International Symposium on CPT’22, Bologna, Italy, 8–10 June 2022. [Google Scholar]
- Jaber, R.; Stark, N. Investigation of the Relationships between Geotechnical Sediment Properties and Sediment Dynamics Using Geotechnical and Geophysical Field Measurements; University Libraries, Virginia Tech Dataset: Blacksburg, VA, USA, 2022. [Google Scholar] [CrossRef]
- ASTM D6913/D6913M; Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D1140; Standard Test Methods for Determining the Amount of Material Finer than 75-μm (No. 200) Sieve in Soils by Washing. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D2216; Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D7263; Standard Test Methods for Laboratory Determination of Density and Unit Weight of Soil Specimens. ASTM International: West Conshohocken, PA, USA, 2021.
- Albatal, A.; McNinch, J.E.; Wadman, H.; Stark, N. In-situ geotechnical investigation of nearshore sediments with regard to cross-shore morphodynamics. In Proceedings of the Geotechnical Frontiers, Orlando, FL, USA, 12–15 March 2017; ASCE: Reston, VA, USA, 2017; pp. 398–408. [Google Scholar]
- Stark, N.; Coco, G.; Bryan, K.R.; Kopf, A. In-situ geotechnical characterization of mixed-grain-size bedforms using a dynamic penetrometer. J. Sediment. Res. 2012, 82, 540–544. [Google Scholar] [CrossRef]
- Albatal, A.; Stark, N. Rapid sediment mapping and in situ geotechnical characterization in challenging aquatic areas. Limnol. Oceanogr. Methods 2017, 15, 690–705. [Google Scholar] [CrossRef]
- Garlan, T.; Kong, E.; Guyomard, P.; Mathias, X.; Zaragosi, S. The sedimentary and acoustic properties of deep sediments from different oceans. In Proceedings of the Institute of Acoustics, Bath, UK, 7–9 September 2015; Volume 37. [Google Scholar]
- Jaber, R.; Stark, N. Geotechnical Properties from Portable Free Fall Penetrometer in Coastal Environments. J. Geotech. Geoenvironmental Eng. 2023, 149, 04023120. [Google Scholar] [CrossRef]
- Mayne, P.W.; Peuchen, J. CPTu bearing factor Nkt for undrained strength evaluation in clays. In Proceedings of the Cone Penetration Testing 2018 (CPT’18), Delft, The Netherlands, 21–22 June 2018. [Google Scholar]
- Al-Neami, M. Investigation of sampling error on soil testing results. Int. J. Civ. Eng. Technol. 2018, 9, 579–589. [Google Scholar]
- Richardson, M.D.; Briggs, K.B. Empirical predictions of seafloor properties based on remotely measured sediment impedance. Proc. AIP Conf. 2004, 728, 12–21. [Google Scholar]
- Richardson, M.D.; Briggs, K.B. On the Use of Acoustic Impedance Values to Determine Sediment Properties; Naval Research Laboratory: Stennis Space Center, MS, USA, 1993. [Google Scholar]
- Jaber, R.; Stark, N.; Jafari, N.; Ravichandran, N. Combined Portable Free Fall Penetrometer and Chirp Sonar Measurements of three Texas River Sections Post Hurricane Harvey. Eng. Geol. 2021, 294, 106324. [Google Scholar] [CrossRef]
- Bull, J.M.; Quinn, R.; Dix, J.K. Reflection coefficient calculation from marine high resolution seismic reflection (CHIRP) data and application to an archaeological case study. Mar. Geophys. Res. 1998, 20, 1–11. [Google Scholar] [CrossRef]
- Jackson, D.R.; Richardson, M.D. High-Frequency Seafloor Acoustics: The Underwater Acoustics Series; Springer: New York, NY, USA, 1992. [Google Scholar]
- Neto, A.A.; Teixeira Mendes, J.D.N.; de Souza, J.M.G.; Redusino, M., Jr.; Leandro Bastos Pontes, R. Geotechnical influence on the acoustic properties of marine sediments of the Santos Basin, Brazil. Mar. Georesources Geotechnol. 2013, 31, 125–136. [Google Scholar] [CrossRef]
Site | Soil Type | Depth Range (cm) | Fines (%) | Water Content w (%) | Bulk Density ρb (kg/m3) | Porosity n (Unitless) | Acoustic Impedance Zs (kg/m2s) | LL (%) | PI (%) |
---|---|---|---|---|---|---|---|---|---|
S1 | Fine-grained soil | 8–19 | 98 | 130 | 1710 | 0.73 | 2.33 × 106 | 61 | 47 |
19–29 | 98 | 119 | 1670 | 0.78 | 2.24 × 106 | 52 | 31 | ||
S2 | Mixed soil | 7–20 | 56 | 96 | 1535 | 0.74 | 2.19 × 106 | 42 | 21 |
S3 | Coarse-grained soil | 7–22 | 0.8 | 39 | 1814 | 0.51 * | 2.78 × 106 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaber, R.; Stark, N.; Sarlo, R.; McNinch, J.E.; Massey, G. Relating Geotechnical Sediment Properties and Low Frequency CHIRP Sonar Measurements. Remote Sens. 2024, 16, 241. https://doi.org/10.3390/rs16020241
Jaber R, Stark N, Sarlo R, McNinch JE, Massey G. Relating Geotechnical Sediment Properties and Low Frequency CHIRP Sonar Measurements. Remote Sensing. 2024; 16(2):241. https://doi.org/10.3390/rs16020241
Chicago/Turabian StyleJaber, Reem, Nina Stark, Rodrigo Sarlo, Jesse E. McNinch, and Grace Massey. 2024. "Relating Geotechnical Sediment Properties and Low Frequency CHIRP Sonar Measurements" Remote Sensing 16, no. 2: 241. https://doi.org/10.3390/rs16020241
APA StyleJaber, R., Stark, N., Sarlo, R., McNinch, J. E., & Massey, G. (2024). Relating Geotechnical Sediment Properties and Low Frequency CHIRP Sonar Measurements. Remote Sensing, 16(2), 241. https://doi.org/10.3390/rs16020241