Comprehensive Ecological Risk Changes and Their Relationship with Ecosystem Services of Alpine Grassland in Gannan Prefecture from 2000–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preprocessing Processes
2.3. Methods
2.3.1. Estimation of an Ecosystem Service Index
2.3.2. The Calculation of the PGDI
- (1)
- GRI
- (2)
- The LERI
- (3)
- The GLBI
- (4)
- The PGDI
- (5)
- Spatial autocorrelation analysis
- (6)
- Geodetector model
3. Results
3.1. The Spatiotemporal Characteristics of the Comprehensive ER
3.2. Spatiotemporal Characteristics of ESs
3.3. The Correlation between Comprehensive ER and ESs
3.4. Analysis of Driving Factors of Ecological Risk
4. Discussion
4.1. A Comprehensive ERA of the Alpine Grassland Based on the PGDI
4.2. The Relationship between ESs and ER
4.3. Driving Factors of ER
4.4. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Calculation Methods and Results for the Three Ecosystem Services
- (1)
- HQ
Threat Factors | Longest Threat Distance | Weight | Spatial Decay Type |
---|---|---|---|
National highway and provincial highway | 2.5 km | 0.6 | Linear decay |
County road | 0.5 km | 0.5 | Linear decay |
Housing estate | 2.5 km | 0.4 | Exponential decay |
Towns | 6.0 km | 0.8 | Exponential decay |
Population density | 3.5 km | 0.3 | Exponential decay |
Unused land | 1.5 km | 0.6 | Exponential decay |
Land-Use Type | Habitat Adaptability | National Road and Provincal Road | County Road | Housing Estate | Towns | Population Density | Cultivated Land |
---|---|---|---|---|---|---|---|
Cultivated land | 0.3 | 0.5 | 0.6 | 0.4 | 0.5 | 0.8 | 0.0 |
Grassland | 0.8 | 0.7 | 0.5 | 0.2 | 0.3 | 0.5 | 0.5 |
Forest land | 1.0 | 0.9 | 0.7 | 0.5 | 0.6 | 0.7 | 0.3 |
Water areas | 0.9 | 0.75 | 0.65 | 0.7 | 0.8 | 0.5 | 0.1 |
Wetland | 1.0 | 0.8 | 0.6 | 0.9 | 0.7 | 0.5 | 0.1 |
Construction land | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.85 | 0.0 |
Unused land | 0.01 | 0.2 | 0.2 | 0.1 | 0.1 | 0.3 | 0.1 |
- (2)
- WY
Land-Use Type | Lucode | Coefficient of Vegetation Transpiration k | Root Depth (mm) | LULC_veg |
---|---|---|---|---|
Cultivated land | 1 | 0.65 | 300 | 1 |
Grassland | 2 | 0.75 | 500 | 1 |
Forest land | 3 | 0.7 | 6500 | 1 |
Water areas | 4 | 1 | 0 | 0 |
Wetland | 5 | 0.7 | 300 | 1 |
Construction land | 6 | 0.2 | 1 | 0 |
Unused land | 7 | 0.3 | 10 | 0 |
- (3)
- SC
Land-Use Types | Code of Land-Use Types | p Factor Value |
---|---|---|
Cultivated land | 0.2 | 0.15 |
Grassland | 0.3 | 1 |
Forest land | 0.05 | 1 |
Water areas | 0 | 0 |
Wetland | 0.05 | 1 |
Construction land | 0 | 1 |
Unused land | 1 | 1 |
Appendix A.2. Calculation Results for the Three Indicators of the PGDI
- (1)
- Grassland resilience index
- (2)
- Landscape ecological risk index
- (3)
- Grass–livestock balance index
Interaction Relationship | Interaction Type |
---|---|
q(X1∩X2) < Min(q(X1), q(X2)) | Nonlinear-weaken: Impacts of single variables are nonlinearly weakened by the interaction between two variables. |
Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) | Uni-variable weaken: Impacts of single variables are uni-variable weakened by the interaction. |
q(X1∩X2) > Max(q(X1), q(X2)) | Bi-variable enhance: Impact of single variables are bi-variable enhanced by the interaction. |
q(X1∩X2) = q(X1) + q(X2) | Independent: Impacts of variables are independent. |
q(X1∩X2) > q(X1) + q(X2) | Nonlinear-enhance: Impacts of variables are nonlinearly enhanced. |
References
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—More Important for Ecosystem Services than You Might Think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Lieth, H. Patterns of Primary Production in the Biosphere; Dowden, Hutchinson & Ross: Stroudsburg, PA, USA, 1978. [Google Scholar]
- Stevens, N.; Bond, W.; Feurdean, A.; Lehmann, C.E.R. Grassy Ecosystems in the Anthropocene. Annu. Rev. Environ. Resour. 2022, 47, 261–289. [Google Scholar] [CrossRef]
- Dong, S.; Shang, Z.; Gao, J.; Boone, R.B. Enhancing Sustainability of Grassland Ecosystems through Ecological Restoration and Grazing Management in an Era of Climate Change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2020, 287, 106684. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.; Dong, J.; Xiao, X. Green-up Dates in the Tibetan Plateau Have Continuously Advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA 2013, 110, 4309–4314. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Gibson, J.; Wang, P. Quantitative Measurements of the Interaction between Net Primary Productivity and Livestock Production in Qinghai Province Based on Data Fusion Technique. J. Clean. Prod. 2017, 142, 758–766. [Google Scholar] [CrossRef]
- Harrison, M.T.; Cullen, B.R.; Rawnsley, R.P. Modelling the Sensitivity of Agricultural Systems to Climate Change and Extreme Climatic Events. Agric. Syst. 2016, 148, 135–148. [Google Scholar] [CrossRef]
- Wu, P.; Zhan, W.; Cheng, N.; Yang, H.; Wu, Y. A Framework to Calculate Annual Landscape Ecological Risk Index Based on Land Use/Land Cover Changes: A Case Study on Shengjin Lake Wetland. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11926–11935. [Google Scholar] [CrossRef]
- Xu, D. Ecological Risk Assessment and Forecast of Gannan Rangeland. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2011. (In Chinese). [Google Scholar]
- Zhao, Y. Alpine Grassland Ecological Security Assessment for the Headwaters of the Yellow River, China. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2021. (In Chinese). [Google Scholar]
- Estoque, R.C.; Murayama, Y. Measuring Sustainability Based upon Various Perspectives: A Case Study of a Hill Station in Southeast Asia. AMBIO 2014, 43, 943–956. [Google Scholar] [CrossRef] [PubMed]
- Norton, S.B.; Rodier, D.J.; Van Der Schalie, W.H.; Wood, W.P.; Slimak, M.W.; Gentile, J.H. A Framework for Ecological Risk Assessment at the EPA. Environ. Toxicol. Chem. 1992, 11, 1663–1672. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y.; Mao, X. Ecological Risk Assessment of Cities on the Tibetan Plateau Based on Land Use/Land Cover Changes—Case Study of Delingha City. Ecol. Indic. 2019, 101, 185–191. [Google Scholar] [CrossRef]
- Walker, R.; Landis, W.; Brown, P. Developing a Regional Ecological Risk Assessment: A Case Study of a Tasmanian Agricultural Catchment. Hum. Ecol. Risk Assess. Int. J. 2001, 7, 417–439. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, Q.; Qiao, N.; Wang, Z.; Sha, W.; Luo, K.; Wang, H.; Feng, Z. Ecological Risk Assessment of Coal Mine Area Based on “Source-Sink” Landscape Theory: A Case Study of Pingshuo Mining Area. J. Clean. Prod. 2021, 295, 126371. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.; Lan, Y.; Zhou, G.; You, H.; Han, X.; Wang, Y.; Shi, X. Landscape Pattern and Ecological Risk Assessment in Guangxi Based on Land Use Change. Int. J. Environ. Res. Public. Health 2022, 19, 1595. [Google Scholar] [CrossRef]
- Lemly, A.D. Risk Assessment as an Environmental Management Tool: Considerations for Freshwater Wetlands. Environ. Manag. 1997, 21, 343–358. [Google Scholar] [CrossRef]
- Hou, M.; Ge, J.; Gao, J.; Meng, B.; Li, Y.; Yin, J.; Liu, J.; Feng, Q.; Liang, T. Ecological Risk Assessment and Impact Factor Analysis of Alpine Wetland Ecosystem Based on LUCC and Boosted Regression Tree on the Zoige Plateau, China. Remote Sens. 2020, 12, 368. [Google Scholar] [CrossRef]
- Bao, K.; Liu, J.; You, X.; Shi, X.; Meng, B. A New Comprehensive Ecological Risk Index for Risk Assessment on Luanhe River, China. Environ. Geochem. Health 2018, 40, 1965–1978. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, W.; Wang, W.; Chen, Z.; Ling, Z.; Lv, J. Ecological Risk Assessment of the Wetlands in Beijing-Tianjin-Hebei Urban Agglomeration. Ecol. Indic. 2020, 117, 106677. [Google Scholar] [CrossRef]
- Yue, D.; Zeng, J.; Yang, C.; Zou, M.; Li, K.; Chen, G.; Guo, J.; Xu, X.; Meng, X. Ecological Risk Assessment of the Gannan Plateau, Northeastern Tibetan Plateau. J. Mt. Sci. 2018, 15, 1254–1267. [Google Scholar] [CrossRef]
- Cai, D. Ecosystem Risk Assessment of Alpine Grassland: A Case of the Gannan Region. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2019. (In Chinese). [Google Scholar]
- Chen, S.; Chen, B.; Fath, B.D. Ecological Risk Assessment on the System Scale: A Review of State-of-the-Art Models and Future Perspectives. Ecol. Model. 2013, 250, 25–33. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Liu, Z.; Yang, Y. Mapping Spatial Non-Stationarity of Human-Natural Factors Associated with Agricultural Landscape Multifunctionality in Beijing–Tianjin–Hebei Region, China. Agric. Ecosyst. Environ. 2017, 246, 221–233. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Fu, B.; Liu, Y.; Zhu, Y. Land Use Optimization Based on Ecosystem Service Assessment: A Case Study in the Yanhe Watershed. Land Use Policy 2018, 72, 303–312. [Google Scholar] [CrossRef]
- Yi, Q. Study on the Relation between Ecosystem Services and Landscape Ecological Risk and Spatial Countermeasures in Ji’an City. Ph.D. Thesis, Jiangxi University of Finance and Economics, Nanchang, China, 2022. (In Chinese). [Google Scholar]
- Wang, X.; Wu, J.; Liu, Y.; Hai, X.; Shanguan, Z.; Deng, L. Driving Factors of Ecosystem Services and Their Spatiotemporal Change Assessment Based on Land Use Types in the Loess Plateau. J. Environ. Manag. 2022, 311, 114835. [Google Scholar] [CrossRef]
- Bejagam, V.; Keesara, V.R.; Sridhar, V. Impacts of Climate Change on Water Provisional Services in Tungabhadra Basin Using invest Model. River Res. Appl. 2022, 38, 94–106. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in Ecosystem Services from Investments in Natural Capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Yu, J.; Li, F.; Wang, Y.; Lin, Y.; Peng, Z.; Cheng, K. Spatiotemporal Evolution of Tropical Forest Degradation and Its Impact on Ecological Sensitivity: A Case Study in Jinghong, Xishuangbanna, China. Sci. Total Environ. 2020, 727, 138678. [Google Scholar] [CrossRef]
- Zhang, C. Econimic of Grassland Ecological Service and Optimization of Classification Management Mode Based on RS and GIS in GanNan; Lanzhou University: Lanzhou, China, 2010. (In Chinese) [Google Scholar]
- Cao, Q.; Zhang, X.; Lei, D.; Guo, L.; Sun, X.; Kong, F.; Wu, J. Multi-Scenario Simulation of Landscape Ecological Risk Probability to Facilitate Different Decision-Making Preferences. J. Clean. Prod. 2019, 227, 325–335. [Google Scholar] [CrossRef]
- Ma, L.; Bo, J.; Li, X.; Fang, F.; Cheng, W. Identifying Key Landscape Pattern Indices Influencing the Ecological Security of Inland River Basin: The Middle and Lower Reaches of Shule River Basin as an Example. Sci. Total Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Fu, B. A Measure of Spatial Stratified Heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Deng, G.; Jiang, H.; Zhu, S.; Wen, Y.; He, C.; Wang, X.; Sheng, L.; Guo, Y.; Cao, Y. Projecting the Response of Ecological Risk to Land Use/Land Cover Change in Ecologically Fragile Regions. Sci. Total Environ. 2024, 914, 169908. [Google Scholar] [CrossRef]
- Duan, H.; Yu, X.; Zhang, L.; Xia, S.; Liu, Y.; Mao, D.; Zhang, G. An Evaluating System for Wetland Ecological Risk: Case Study in Coastal Mainland China. Sci. Total Environ. 2022, 828, 154535. [Google Scholar] [CrossRef]
- Rao, J.; Ouyang, X.; Pan, P.; Huang, C.; Li, J.; Ye, Q. Ecological Risk Assessment of Forest Landscapes in Lushan National Nature Reserve in Jiangxi Province, China. Forests 2024, 15, 484. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and Prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Meng, B.; Gao, J.; Liang, T.; Cui, X.; Ge, J.; Yin, J.; Feng, Q.; Xie, H. Modeling of Alpine Grassland Cover Based on Unmanned Aerial Vehicle Technology and Multi-Factor Methods: A Case Study in the East of Tibetan Plateau, China. Remote Sens. 2018, 10, 320. [Google Scholar] [CrossRef]
- Yu, J.; Wan, L.; Liu, G.; Ma, K.; Cheng, H.; Shen, Y.; Liu, Y.; Su, X. A Meta-Analysis on Degraded Alpine Grassland Mediated by Climate Factors: Enlightenment for Ecological Restoration. Front. Plant Sci. 2022, 12, 821954. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, W.; Xu, J.; Zhou, H.; Wang, W.; Wang, H. Temporal and Spatial Variations of Ecological Security on the Northeastern Tibetan Plateau Integrating Ecosystem Health-Risk-Services Framework. Ecol. Indic. 2024, 158, 111365. [Google Scholar] [CrossRef]
- Hazbavi, Z.; Sadeghi, S.H.; Gholamalifard, M.; Davudirad, A.A. Watershed Health Assessment Using the Pressure–State–Response (PSR) Framework. Land Degrad. Dev. 2020, 31, 3–19. [Google Scholar] [CrossRef]
- Xue, C.; Zhang, H.; Wu, S.; Chen, J.; Chen, X. Spatial-Temporal Evolution of Ecosystem Services and Its Potential Drivers: A Geospatial Perspective from Bairin Left Banner, China. Ecol. Indic. 2022, 137, 108760. [Google Scholar] [CrossRef]
- Zhu, Q.; Guo, J.; Guo, X.; Chen, L.; Han, Y.; Liu, S. Relationship between Ecological Quality and Ecosystem Services in a Red Soil Hilly Watershed in Southern China. Ecol. Indic. 2021, 121, 107119. [Google Scholar] [CrossRef]
- Gong, J.; Cao, E.; Xie, Y.; Xu, C.; Li, H.; Yan, L. Integrating Ecosystem Services and Landscape Ecological Risk into Adaptive Management: Insights from a Western Mountain-Basin Area, China. J. Environ. Manag. 2021, 281, 111817. [Google Scholar] [CrossRef] [PubMed]
- Côté, I.M.; Darling, E.S. Rethinking Ecosystem Resilience in the Face of Climate Change. PLoS Biol. 2010, 8, e1000438. [Google Scholar] [CrossRef]
- Kang, P.; Chen, W.; Hou, Y.; Li, Y. Linking Ecosystem Services and Ecosystem Health to Ecological Risk Assessment: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration. Sci. Total Environ. 2018, 636, 1442–1454. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.; Sobrino, J.; Plaza, A.; Guanter, L.; Moreno, J.; Martinez, P. Comparison between Fractional Vegetation Cover Retrievals from Vegetation Indices and Spectral Mixture Analysis: Case Study of Proba/Chris Data over an Agricultural Area. Sensors 2009, 9, 768–793. [Google Scholar] [CrossRef]
- Wu, D.; Wu, H.; Zhao, X.; Zhou, T.; Tang, B.; Zhao, W.; Jia, K. Evaluation of Spatiotemporal Variations of Global Fractional Vegetation Cover Based on Gimms/Ndvi Data from 1982 to 2011. Remote Sens. 2014, 6, 4217–4239. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Godínez-Alvarez, H.; Herrick, J.E.; Mattocks, M.; Toledo, D.; Van Zee, J. Comparison of Three Vegetation Monitoring Methods: Their Relative Utility for Ecological Assessment and Monitoring. Ecol. Indic. 2009, 9, 1001–1008. [Google Scholar] [CrossRef]
- Yuan, B.; Fu, L.; Zou, Y.; Zhang, S.; Chen, X.; Li, F.; Deng, Z.; Xie, Y. Spatiotemporal Change Detection of Ecological Quality and the Associated Affecting Factors in Dongting Lake Basin, Based on RSEI. J. Clean. Prod. 2021, 302, 126995. [Google Scholar] [CrossRef]
- Xiong, Y. Assessment of Spatial–Temporal Changes of Ecological Environment Quality Based on RSEI and GEE: A Case Study in Erhai Lake Basin, Yunnan Province, China. Ecol. Indic. 2021, 125, 107518. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Yang, Z.; Marinello, F. Exploration of Eco-Environment and Urbanization Changes in Coastal Zones: A Case Study in China over the Past 20 Years. Ecol. Indic. 2020, 119, 106847. [Google Scholar] [CrossRef]
- Karimian, H.; Zou, W.; Chen, Y.; Xia, J.; Wang, Z. Landscape Ecological Risk Assessment and Driving Factor Analysis in Dongjiang River Watershed. Chemosphere 2022, 307, 135835. [Google Scholar] [CrossRef]
- Shi, H.; Yang, Z.; Han, F.; Shi, T.; Li, D. Assessing Landscape Ecological Risk for a World Natural Heritage Site: A Case Study of Bayanbulak in China. Pol. J. Environ. Stud. 2015, 24, 269–283. [Google Scholar] [CrossRef]
- Gao, H.; Song, W. Assessing the Landscape Ecological Risks of Land-Use Change. Int. J. Environ. Res. Public Health 2022, 19, 13945. [Google Scholar] [CrossRef] [PubMed]
- Ran, P.; Hu, S.; Frazier, A.E.; Qu, S.; Yu, D.; Tong, L. Exploring Changes in Landscape Ecological Risk in the Yangtze River Economic Belt from a Spatiotemporal Perspective. Ecol. Indic. 2022, 137, 108744. [Google Scholar] [CrossRef]
- Qian, Y.; Dong, Z.; Yan, Y.; Tang, L. Ecological Risk Assessment Models for Simulating Impacts of Land Use and Landscape Pattern on Ecosystem Services. Sci. Total Environ. 2022, 833, 155218. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zheng, H.; Zhao, X.; Sang, Z.; Yan, W.; Cai, Z.; Xu, Y.; Zhang, F. Landscape Ecological Risk Assessment of the Hailar River Basin Based on Ecosystem Services in China. Ecol. Indic. 2023, 147, 109795. [Google Scholar] [CrossRef]
- Yu, H.; Liu, B.; Wang, G.; Zhang, T.; Yang, Y.; Lu, Y.; Xu, Y.; Huang, M.; Yang, Y.; Zhang, L. Grass-Livestock Balance Based Grassland Ecological Carrying Capability and Sustainable Strategy in the Yellow River Source National Park, Tibet Plateau, China. J. Mt. Sci. 2021, 18, 2201–2211. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Lin, C.; Shao, H.; Feng, X.; Chen, X.; Wang, S. Ecological Risk Assessment and Difference Analysis of Pit Ponds under Different Ecological Service Functions-A Case Study of Jianghuai Ecological Economic Zone. Ecol. Indic. 2021, 129, 107860. [Google Scholar] [CrossRef]
- Cabral-Alemán, C.; López-Santos, A.; Zúñiga-Vásquez, J.M. Mapping Risk Zones of Potential Erosion in the Upper Nazas River Basin, Mexico through Spatial Autocorrelation Techniques. Environ. Earth Sci. 2021, 80, 653. [Google Scholar] [CrossRef]
- Peng, C.; Li, B.; Nan, B. An Analysis Framework for the Ecological Security of Urban Agglomeration: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration. J. Clean. Prod. 2021, 315, 128111. [Google Scholar] [CrossRef]
- He, J.; Pan, Z.; Liu, D.; Guo, X. Exploring the Regional Differences of Ecosystem Health and Its Driving Factors in China. Sci. Total Environ. 2019, 673, 553–564. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Wang, W.; Zhou, H.; Liang, T.; Hou, F.; Xu, J.; Xue, P. Quantitative Spatial Analysis of Vegetation Dynamics and Potential Driving Factors in a Typical Alpine Region on the Northeastern Tibetan Plateau Using the Google Earth Engine. CATENA 2021, 206, 105500. [Google Scholar] [CrossRef]
- Peng, L.; Dong, B.; Wang, P.; Sheng, S.; Sun, L.; Fang, L.; Li, H.; Liu, L. Research on Ecological Risk Assessment in Land Use Model of Shengjin Lake in Anhui Province, China. Environ. Geochem. Health 2019, 41, 2665–2679. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape Ecological Risk Assessment of Chinese Coastal Cities Based on Land Use Change. Appl. Geogr. 2020, 117, 102174. [Google Scholar] [CrossRef]
- Lehnert, L.W.; Meyer, H.; Wang, Y.; Miehe, G.; Thies, B.; Reudenbach, C.; Bendix, J. Retrieval of Grassland Plant Coverage on the Tibetan Plateau Based on a Multi-Scale, Multi-Sensor and Multi-Method Approach. Remote Sens. Environ. 2015, 164, 197–207. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Chen, Y.; Cheng, F.; Liu, G.; He, Z. Remote-Sensing Monitoring of Grassland Degradation Based on the GDI in Shangri-La, China. Remote Sens. 2019, 11, 3030. [Google Scholar] [CrossRef]
- Zhang, F.; Yushanjiang, A.; Wang, D. Ecological Risk Assessment Due to Land Use/Cover Changes (LUCC) in Jinghe County, Xinjiang, China from 1990 to 2014 Based on Landscape Patterns and Spatial Statistics. Environ. Earth Sci. 2018, 77, 491. [Google Scholar] [CrossRef]
- Huang, X.; Wang, X.; Zhang, X.; Zhou, C.; Ma, J.; Feng, X. Ecological Risk Assessment and Identification of Risk Control Priority Areas Based on Degradation of Ecosystem Services: A Case Study in the Tibetan Plateau. Ecol. Indic. 2022, 141, 109078. [Google Scholar] [CrossRef]
- Depietri, Y. The Social–Ecological Dimension of Vulnerability and Risk to Natural Hazards. Sustain. Sci. 2020, 15, 587–604. [Google Scholar] [CrossRef]
- Renn, O. Concepts of Risk: An Interdisciplinary Review Part 1: Disciplinary Risk Concepts. GAIA—Ecol. Perspect. Sci. Soc. 2008, 17, 50–66. [Google Scholar] [CrossRef]
- Qiao, F.; Bai, Y.; Xie, L.; Yang, X.; Sun, S. Spatio-Temporal Characteristics of Landscape Ecological Risks in the Ecological Functional Zone of the Upper Yellow River, China. Int. J. Environ. Res. Public. Health 2021, 18, 12943. [Google Scholar] [CrossRef]
- Liu, X.; Feng, Q.; Liang, T.; Long, R. Spatial-temporal dynamic balance between livestock carrying capacity and productivity of rangeland in Gannan of Gansu Province, China. Chin. J. Grassl. 2010, 32, 99–106. (In Chinese) [Google Scholar]
- Dong, T.; Xu, W.; Zheng, H.; Xiao, Y.; Kong, L.; Ouyang, Z. A Framework for Regional Ecological Risk Warning Based on Ecosystem Service Approach: A Case Study in Ganzi, China. Sustainability 2018, 10, 2699. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Wu, J.; Lv, H.; Hu, X. Linking Ecosystem Services and Landscape Patterns to Assess Urban Ecosystem Health: A Case Study in Shenzhen City, China. Landsc. Urban Plan. 2015, 143, 56–68. [Google Scholar] [CrossRef]
- Xu, X.; Yang, G.; Tan, Y.; Zhuang, Q.; Li, H.; Wan, R.; Su, W.; Zhang, J. Ecological Risk Assessment of Ecosystem Services in the Taihu Lake Basin of China from 1985 to 2020. Sci. Total Environ. 2016, 554–555, 7–16. [Google Scholar] [CrossRef]
- Wong, C.P.; Jiang, B.; Kinzig, A.P.; Lee, K.N.; Ouyang, Z. Linking Ecosystem Characteristics to Final Ecosystem Services for Public Policy. Ecol. Lett. 2015, 18, 108–118. [Google Scholar] [CrossRef]
- Li, W.; Kang, J.; Wang, Y. Seasonal Changes in Ecosystem Health and Their Spatial Relationship with Landscape Structure in China’s Loess Plateau. Ecol. Indic. 2024, 163, 112127. [Google Scholar] [CrossRef]
- Xia, H.; Kong, W.; Zhou, G.; Sun, O.J. Impacts of Landscape Patterns on Water-Related Ecosystem Services under Natural Restoration in Liaohe River Reserve, China. Sci. Total Environ. 2021, 792, 148290. [Google Scholar] [CrossRef]
- Shi, S.; Wang, P.; Zhan, X.; Han, J.; Guo, M.; Wang, F. Warming and Increasing Precipitation Induced Greening on the Northern Qinghai-Tibet Plateau. CATENA 2023, 233, 107483. [Google Scholar] [CrossRef]
- Hao, A.; Duan, H.; Wang, X.; Zhao, G.; You, Q.; Peng, F.; Du, H.; Liu, F.; Li, C.; Lai, C.; et al. Different Response of Alpine Meadow and Alpine Steppe to Climatic and Anthropogenic Disturbance on the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 2021, 27, e01512. [Google Scholar] [CrossRef]
- Bi, W.; Wang, K.; Weng, B.; Zhang, D.; Dong, Z.; Shi, X.; Liu, S.; Yan, D. Effects of Land Use Changes on the Soil-Vegetation Ecosystem in Winter in the Huangshui River Basin, China. Ecol. Indic. 2023, 154, 110675. [Google Scholar] [CrossRef]
- Pham, H.V.; Sperotto, A.; Torresan, S.; Acuña, V.; Jorda-Capdevila, D.; Rianna, G.; Marcomini, A.; Critto, A. Coupling Scenarios of Climate and Land-Use Change with Assessments of Potential Ecosystem Services at the River Basin Scale. Ecosyst. Serv. 2019, 40, 101045. [Google Scholar] [CrossRef]
- Su, Y.; Li, Y.; Cui, J.; Zhao, W. Influences of Continuous Grazing and Livestock Exclusion on Soil Properties in a Degraded Sandy Grassland, Inner Mongolia, Northern China. CATENA 2005, 59, 267–278. [Google Scholar] [CrossRef]
- Lei, J.; Chen, Y.; Li, L.; Chen, Z.; Chen, X.; Wu, T.; Li, Y. Spatiotemporal Change of Habitat Quality in Hainan Island of China Based on Changes in Land Use. Ecol. Indic. 2022, 145, 109707. [Google Scholar] [CrossRef]
- Yu, Y.; Sun, X.; Wang, J.; Zhang, J. Using InVEST to Evaluate Water Yield Services in Shangri-La, Northwestern Yunnan, China. PeerJ 2022, 10, e12804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of Mean Annual Evapotranspiration to Vegetation Changes at Catchment Scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A Rational Function Approach for Estimating Mean Annual Evapotranspiration. Water Resour. Res. 2004, 40, 2003WR002710. [Google Scholar] [CrossRef]
- Li, M.; Liang, D.; Xia, J.; Song, J.; Cheng, D.; Wu, J.; Cao, Y.; Sun, H.; Li, Q. Evaluation of Water Conservation Function of Danjiang River Basin in Qinling Mountains, China Based on InVEST Model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Xu, Y.; Sun, P.; Zhou, G.; Liu, C.; Lu, L.; Xiang, Y.; Wang, H. Land Use/Land Cover Changes and Its Impact on Ecosystem Services in Ecologically Fragile Zone: A Case Study of Zhangjiakou City, Hebei Province, China. Ecol. Indic. 2019, 104, 604–614. [Google Scholar] [CrossRef]
- Gong, J.; Liu, D.; Zhang, J.; Xie, Y.; Cao, E.; Li, H. Tradeoffs/Synergies of Multiple Ecosystem Services Based on Land Use Simulation in a Mountain-Basin Area, Western China. Ecol. Indic. 2019, 99, 283–293. [Google Scholar] [CrossRef]
- Fu, B.J.; Zhao, W.W.; Chen, L.D.; Zhang, Q.J.; Lü, Y.H.; Gulinck, H.; Poesen, J. Assessment of Soil Erosion at Large Watershed Scale Using RUSLE and GIS: A Case Study in the Loess Plateau of China. Land Degrad. Dev. 2005, 16, 73–85. [Google Scholar] [CrossRef]
Data | Spatial | Data Descriptions | Source |
---|---|---|---|
Administrative division | Vector format | The data were employed for the computation of regional division and result analysis | National Geospatial Information Public Service Cloud Platform (https://www.tianditu.gov.cn/), accessed on 10 May 2023. |
Land use data in 2000–2020 | Grid cells at 30 m resolution | Land use data were employed for the computation of ESs and landscape ER index | Zenodo (https://doi.org/10.5281/zenodo.5816591), accessed on 10 May 2023. |
Digital elevation model data | Grid cells at 1 km resolution | The data were employed for the computation of ESs index, extract slope data, slope aspect data. | Geospatial Data Cloud (www.gscloud.cn), accessed on 15 June 2023. |
Normalized difference vegetation index | Grid cells at 30 m resolution | The data were used to calculate the driving factors of ER | National Ecological Science Data Center (https://cstr.cn/15732.11.nesdc.ecodb.rs.2021.012), accessed on 3 May 2023. |
Meteorological data | Vector and table format | The data were employed for the computation of each ESs | National Meteorological Information Center (http://data.cma.cn), accessed on 4 April 2023. |
Soil data | Grid cells at 1 km resolution | The data were employed for the computation of each ES | National Cryosphere Desert Data Center (http://www.ncdc.ac.cn), accessed on 4 April 2023. |
Remoting sensing data | Landsat5 TM/8 OLI image data | The data were employed for the computation of remoting ecological index and fractional vegetation coverage | Google Earth Engine (https://earthengine.google.com/), accessed on 8 May 2023. |
Above-grassland biomass (AGB) | Grid cells at 250 m resolution | The data were employed for the computation of the grass–livestock balance index | TPDC (https://doi.org/10.11888/Terre.tpdc.272587), accessed on 13 April 2023. |
Population density | Grid cells at 100 m resolution | The data were employed for the computation of the grass–livestock balance index | WorldPop (https://hub.worldpop.org/geodata/listing?id=16), accessed on 4 April 2023. |
Statistical data | Table or text format | The data were used to obtain the fertilizer usage, urbanization rate, gross domestic product, and so on | Gannan Prefecture Bureau of Statistics Site (http://www.gnzrmzf.gov.cn/zfxxgk/fdzdgknr1/tjxx/tjnj2.htm), accessed on 15 June 2023. |
Geographical data | Vector format | The data were employed to extract residential and road data | OpenStreetMap (http://download.geofabrik.de/), accessed on 19 April 2023. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Gao, J.; Liang, T.; He, Z.; Feng, S.; Zhang, X.; Zhang, D. Comprehensive Ecological Risk Changes and Their Relationship with Ecosystem Services of Alpine Grassland in Gannan Prefecture from 2000–2020. Remote Sens. 2024, 16, 2242. https://doi.org/10.3390/rs16122242
Ma Z, Gao J, Liang T, He Z, Feng S, Zhang X, Zhang D. Comprehensive Ecological Risk Changes and Their Relationship with Ecosystem Services of Alpine Grassland in Gannan Prefecture from 2000–2020. Remote Sensing. 2024; 16(12):2242. https://doi.org/10.3390/rs16122242
Chicago/Turabian StyleMa, Zhanping, Jinlong Gao, Tiangang Liang, Zhibin He, Senyao Feng, Xuanfan Zhang, and Dongmei Zhang. 2024. "Comprehensive Ecological Risk Changes and Their Relationship with Ecosystem Services of Alpine Grassland in Gannan Prefecture from 2000–2020" Remote Sensing 16, no. 12: 2242. https://doi.org/10.3390/rs16122242
APA StyleMa, Z., Gao, J., Liang, T., He, Z., Feng, S., Zhang, X., & Zhang, D. (2024). Comprehensive Ecological Risk Changes and Their Relationship with Ecosystem Services of Alpine Grassland in Gannan Prefecture from 2000–2020. Remote Sensing, 16(12), 2242. https://doi.org/10.3390/rs16122242