Vertical Distribution of Optical Turbulence at the Peak Terskol Observatory and Mount Kurapdag
Abstract
:1. Introduction
2. Data
3. Results
3.1. Vertical Distributions of Optical Turbulence from Shack–Hartmann Sensor Measurements at the Peak Terskol Observatory
3.2. Analysis of Sonic Measurements within the Atmospheric Surface Layer–Estimation of Optical Turbulence Strength
3.3. Vertical Distribution of Optical Turbulence Strength Estimated from Era-5 Reanalysis
4. Estimation of the Fried Parameter at the Sites with Good Astroclimatic Conditions
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coulman, C.E. Fundamental and applied aspects of astronomical “seeing”. Annu. Rev. Astron. Astrophys. 1985, 23, 19–57. [Google Scholar] [CrossRef]
- Tokovinin, A. The Elusive Nature of “Seeing”. Atmosphere 2023, 14, 1694. [Google Scholar] [CrossRef]
- Ran, X.; Zhang, L.; Rao, C. The AC-SLODAR: Measuring daytime normalized optical turbulence intensity distribution based on slope autocorrelation. Mon. Not. R. Astron. Soc. 2024, 528, 3981–3991. [Google Scholar] [CrossRef]
- Hickson, P.; Ma, B.; Shang, Z.; Xue, S. Multistar turbulence monitor: A new technique to measure optical turbulence profiles. Mon. Not. R. Astron. Soc. 2019, 485, 2532–2545. [Google Scholar] [CrossRef]
- Hickson, P.; Feng, L.; Hellemeier, J.A.; Shen, Z.; Xue, S.; Yao, Y.; Ma, B.; Chen, H.; Yang, R. Optical turbulence at Ali, China—Results from the first year of lunar scintillometer observation. Mon. Not. R. Astron. Soc. 2020, 494, 5992–6000. [Google Scholar] [CrossRef]
- Wilson, R. SLODAR: Measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor. Mon. Not. R. Astron. Soc. 2002, 337, 103–108. [Google Scholar] [CrossRef]
- Deng, J.; Song, T.-F.; Liu, Y. A Review of Daytime Atmospheric Optical Turbulence Profile Detection Technology. Chin. Astron. Astrophys. 2023, 47, 257–284. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Kong, L.; Bao, H.; Guo, Y.; Rao, X.; Zhong, L.; Zhu, L.; Rao, C. A modified S-DIMM+: Applying additional height grids for characterizing daytime seeing profiles. Mon. Not. R. Astron. Soc. 2018, 478, 1459–1467. [Google Scholar] [CrossRef]
- Subramanian, S.K.; Rengaswamy, S. Forward modelling of turbulence strength profile estimation using S-DIMM+. Proc. SPIE 2023, 12638, 1263812. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y. A Method of Determining Optical Turbulence Characteristics by the Line of Sight of an Astronomical Telescope. Atmos. Ocean. Opt. 2022, 35, 303–309. [Google Scholar] [CrossRef]
- Joo, J.Y.; Ha, H.S.; Lee, J.H.; Kim, Y.S.; Butterley, T. SLODAR System Development for Vertical Atmospheric Disturbance Profiling at Geochang Observatory. Curr. Opt. Photonics 2024, 8, 30–37. [Google Scholar] [CrossRef]
- Bennoui, F.; Bahloul, D. Estimation of the Atmospheric Turbulence Parameters Using the Angle-of-Arrival Covariance Function. Atmos. Ocean. Opt. 2023, 36, 569–577. [Google Scholar] [CrossRef]
- Griffiths, R.; Bardou, L.; Butterley, T.; Osborn, J.; Wilson, R.; Bustos, E.; Tokovinin, A.; Le Louarn, M.; Otarola, A. A comparison of next-generation turbulence profiling instruments at Paranal. Mon. Not. R. Astron. Soc. 2024, 529, 320–330. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, T.; Wang, F.-F.; Sun, G.; Liu, Q.; Qing, C.; Li, X.-B.; Weng, N.-Q.; Zhu, W.-Y. Influence of low clouds on atmospheric refractive index structure constant based on radiosonde data. Acta Phys. Sin. 2022, 71, 089202. [Google Scholar] [CrossRef]
- Bolbasova, L.A.; Shikhovtsev, A.Y.; Kopylov, E.A.; Selin, A.A.; Lukin, V.P.; Kovadlo, P.G. Daytime optical turbulence and wind speed distributions at the Baikal Astrophysical Observatory. Mon. Not. R. Astron. Soc. 2019, 482, 2619–2626. [Google Scholar] [CrossRef]
- Qing, C.; Wu, X.; Li, X.; Luo, T.; Su, C.; Zhu, W. Mesoscale optical turbulence simulations above Tibetan Plateau: First attempt. Opt. Express 2020, 28, 4571–4586. [Google Scholar] [CrossRef]
- Bi, C.; Qing, C.; Qian, X.; Luo, T.; Zhu, W.; Weng, N. Investigation of the Global Spatio-Temporal Characteristics of Astronomical Seeing. Remote Sens. 2023, 15, 2225. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, X.; Han, Y.; Chun, Q.; Wu, S.; Su, C.; Wu, P.; Luo, T.; Zhang, S. Estimating the astronomical seeing above Dome A using Polar WRF based on the Tatarskii equation. Opt. Express 2021, 29, 44000–44011. [Google Scholar] [CrossRef]
- Quatresooz, F.; Griffiths, R.; Bardou, L.; Wilson, R.; Osborn, J.; Vanhoenacker-Janvier, D.; Claude, O. Continuous daytime and nighttime forecast of atmospheric optical turbulence from numerical weather prediction models. Opt. Express 2023, 31, 33850–33872. [Google Scholar] [CrossRef]
- Wu, X.-Q.; Xiao, C.-Y.; Esamdin, A.; Xu, J.; Wang, Z.-W.; Xiao, L. Quantitative Analysis of Seeing with Height and Time at Muztagh-Ata Site Based on ERA5 Database. Res. Astron. Astrophys. 2024, 24, 015006. [Google Scholar] [CrossRef]
- Cuevas, O.; Marin, J.C.; Blazquez, J.; Meyer, C. Combining models to forecast the optical turbulence at Paranal. Mon. Not. R. Astron. Soc. 2024, 529, 2208–2219. [Google Scholar] [CrossRef]
- Macatangay, R.; Rattanasoon, S.; Butterley, T.; Bran, S.H.; Sonkaew, T.; Sukaum, B.; Sookjai, D.; Panya, M.; Supasri, T. Seeing and turbulence profile simulations over complex terrain at the Thai National Observatory using a chemistry-coupled regional forecasting model. Mon. Not. R. Astron. Soc. 2024, 530, 1414–1423. [Google Scholar] [CrossRef]
- Bi, C.; Qing, C.; Qian, X.; Zhu, W.; Luo, T.; Li, X.; Cui, S.; Weng, N. Astroclimatic parameters characterization at lenghu site with ERA5 products. Mon. Not. R. Astron. Soc. 2024, 527, 4616–4631. [Google Scholar] [CrossRef]
- Masciadri, E.; Jabouille, P. Improvements in the optical turbulence parameterization for 3D simulations in a region around a telescope. Astron. Astrophys. 2001, 376, 727–734. [Google Scholar] [CrossRef]
- Turchi, A.; Masciadri, E.; Fini, L. Forecasting surface-layer atmospheric parameters at the Large Binocular Telescope site. Mon. Not. R. Astron. Soc. 2017, 466, 1925–1943. [Google Scholar] [CrossRef]
- Shikhovtsev, A. Reference optical turbulence characteristics at the Large Solar Vacuum Telescope site. Publ. Astron. Soc. Jpn. 2024, psae031. [Google Scholar] [CrossRef]
- Bolbasova, L.A.; Kopylov, E.A. Long-Term Trends of Astroclimatic Parameters above the Terskol Observatory. Atmosphere 2023, 14, 1264. [Google Scholar] [CrossRef]
- Khaikin, V.B.; Shikhovtsev, A.Y.; Shmagin, V.E.; Lebedev, M.K.; Kopylov, E.A.; Lukin, V.P.; Kovadlo, P.G. Eurasian Submillimeter Telescopes (ESMT) project. Possibility of submm image quality improvement using adaptive optics. Zhurnal Radioelektroniki [J. Radio Electron.] 2022, 7. (In Russian) [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Kovadlo, P.G. Statistical estimations of the vapor content and optical thickness of the atmosphere using reanalysis and radiosonding data as applied to millimeter telescopes. Optika Atmosfery i Okeana 2024, 37, 169–175. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Huang, J.; Yin, J.; Wang, M.; He, Q.; Guo, J.; Zhang, J.; Liang, X.; Xie, Y. Evaluation of Five Reanalysis Products with Radiosonde Observations Over the Central Taklimakan Desert During Summer. Earth Space Sci. 2021, 8, 2021EA001707. [Google Scholar] [CrossRef]
- Rao, P.; Wang, F.; Yuah, X.; Liu, Y.; Jiao, Y. Evaluation and comparison of 11 sets of gridded precipitation products over the Qinghai-Tibet Plateau. Atmos. Res. 2024, 302, 107315. [Google Scholar] [CrossRef]
- Townson, M.J.; Kellerer, A.; Saunter, C.D. Improved shift estimates on extended Shack–Hartmann wavefront sensor images. Mon. Not. R. Astron. Soc. 2015, 452, 4022–4028. [Google Scholar] [CrossRef]
- Potanin, S.A.; Kornilov, M.-V.; Savvin, A.D.; Safonov, B.S.; Ibragimov, M.A.; Kopylov, E.A.; Nalivkin, M.A.; Shmagin, V.E.; Huy, L.X.; Thao, N.T. A Facility for the Study of Atmospheric Parameters Based on the Shack–Hartmann Sensor. Astrophys. Bull. 2022, 77, 214–221. [Google Scholar] [CrossRef]
- Kornilov, V.; Safonov, B.; Kornilov, M.; Shatsky, N.; Voziakova, O.; Potanin, S.; Gorbunov, I.; Senik, V.; Cheryasov, D. Study on atmospheric optical turbulence above mount Shatdzhatmaz in 2007–2013. Publ. Astron. Soc. Pac. 2014, 126, 482–495. [Google Scholar] [CrossRef]
- Panchuk, V.E.; Afanas’ev, V.L. Astroclimate of Northern Caucasus-myths and reality. Astrophys. Bull. 2011, 66, 233–254. [Google Scholar] [CrossRef]
- Odintsov, S.L.; Gladkikh, V.A.; Kamardin, A.P.; Nevzorova, I.V. Determination of the Structural Characteristic of the Refractive Index of Optical Waves in the Atmospheric Boundary Layer with Remote Acoustic Sounding Facilities. Atmosphere 2019, 10, 711. [Google Scholar] [CrossRef]
- Lukin, V.P.; Botygina, N.N.; Gladkikh, V.A.; Emaleev, O.N.; Konyaev, P.A.; Odintsov, S.L.; Torgaev, A.V. Joint measurements of atmospheric turbulence level with optical and acoustic meters. Atmos. Ocean. Opt. 2015, 28, 254–257. [Google Scholar] [CrossRef]
- Rao, R. Effect of Outer Scale of Atmospheric Turbulence on Imaging Resolution of Large Telescopes. Guangxue Xuebao/Acta Opt. Sin. 2023, 43, 2400001. [Google Scholar]
- Tillayev, Y.; Azimov, A.; Ehgamberdiev, S.; Ilyasov, S. Astronomical Seeing and Meteorological Parameters at Maidanak Observatory. Atmosphere 2023, 14, 199. [Google Scholar] [CrossRef]
- Mahmood, D.A.; Naif, S.S.; Al-Jiboori, M.H.; Al-Rbayee, T. Improving Hufnagel-Andrews-Phillips model for prediction using empirical wind speed profiles. J. Atmos. Sol. Terr. Phys. 2022, 240, 105952. [Google Scholar] [CrossRef]
Season | 10%, | 25%, | 50%, | 75%, |
---|---|---|---|---|
Average atmospheric conditions | ||||
Winter | 2.7 · | 7.0 · | 8.6 · | 8.0 · |
Spring | 4.0 · | 6.8 · | 4.4 · | 1.5 · |
Summer | 3.0 · | 5.0 · | 1.1 · | 1.2 · |
Autumn | 3.4 · | 6.0 · | 3.8 · | 3.5 · |
Clear sky, light surface wind 2.5 m/s | ||||
Winter | 5.0 · | 1.1 · | 2.6 · | 1.1 · |
Spring | 4.8 · | 5.7 · | 1.1 · | 3.1 · |
Summer | 1.4 · | 4.2 · | 5.3 · | 2.2 · |
Autumn | 1.6 · | 3.5 · | 6.0 · | 3.0 · |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikhovtsev, A.Y.; Qing, C.; Kopylov, E.A.; Potanin, S.A.; Kovadlo, P.G. Vertical Distribution of Optical Turbulence at the Peak Terskol Observatory and Mount Kurapdag. Remote Sens. 2024, 16, 2102. https://doi.org/10.3390/rs16122102
Shikhovtsev AY, Qing C, Kopylov EA, Potanin SA, Kovadlo PG. Vertical Distribution of Optical Turbulence at the Peak Terskol Observatory and Mount Kurapdag. Remote Sensing. 2024; 16(12):2102. https://doi.org/10.3390/rs16122102
Chicago/Turabian StyleShikhovtsev, Artem Y., Chun Qing, Evgeniy A. Kopylov, Sergey A. Potanin, and Pavel G. Kovadlo. 2024. "Vertical Distribution of Optical Turbulence at the Peak Terskol Observatory and Mount Kurapdag" Remote Sensing 16, no. 12: 2102. https://doi.org/10.3390/rs16122102
APA StyleShikhovtsev, A. Y., Qing, C., Kopylov, E. A., Potanin, S. A., & Kovadlo, P. G. (2024). Vertical Distribution of Optical Turbulence at the Peak Terskol Observatory and Mount Kurapdag. Remote Sensing, 16(12), 2102. https://doi.org/10.3390/rs16122102