The Issue of Land Subsidence in Coastal and Alluvial Plains: A Bibliometric Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Elaboration
3. Results and Discussion
3.1. Publication Outputs: General Trends and Subject Area
3.2. Global Trends and Collaborations in LS Studies
3.3. Analysis of Authors’ Keywords
3.3.1. Trajectories of Study
3.3.2. Trends in the Research through Time
3.3.3. Distribution of Research Power
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, R.L.; Yue, Z.Q.; Wang, L.C.; Wang, S.J. Review on Current Status and Challenging Issues of Land Subsidence in China. Eng. Geol. 2004, 76, 65–77. [Google Scholar] [CrossRef]
- Higgins, S.A. Review: Advances in Delta-Subsidence Research Using Satellite Methods. Hydrogeol. J. 2016, 24, 587–600. [Google Scholar] [CrossRef]
- Galloway, D.L.; Jones, D.R.; Ingebritsen, S.E. Measuring Land Subsidence from Space; GS Fact Sheet-051-00; USGS: Reston, VA, USA, 2000; pp. 1–4.
- Galloway, D.L.; Burbey, T.J. Review: Regional Land Subsidence Accompanying Groundwater Extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Jones, C.E.; An, K.; Blom, R.G.; Kent, J.D.; Ivins, E.R.; Bekaert, D. Anthropogenic and Geologic Influences on Subsidence in the Vicinity of New Orleans, Louisiana. J. Geophys. Res. Solid Earth 2016, 121, 3867–3887. [Google Scholar] [CrossRef]
- Stouthamer, E.; Erkens, G.; Cohen, K.; Hegger, D.; Driessen, P.; Weikard, H.P.; Hefting, M.; Hanssen, R.; Fokker, P.; van den Akker, J.; et al. Dutch National Scientific Research Program on Land Subsidence: Living on Soft Soils—Subsidence and Society. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 815–819. [Google Scholar] [CrossRef]
- Allison, M.; Yuill, B.; Törnqvist, T.; Amelung, F.; Dixon, T.; Erkens, G.; Stuurman, R.; Jones, C.; Milne, G.; Steckler, M.; et al. Global Risks and Research Priorities for Coastal Subsidence. Eos 2016, 97, 22–27. [Google Scholar] [CrossRef]
- Shirzaei, M.; Freymueller, J.; Törnqvist, T.E.; Galloway, D.L.; Dura, T.; Minderhoud, P.S.J. Measuring, Modelling and Projecting Coastal Land Subsidence. Nat. Rev. Earth Environ. 2021, 2, 40–58. [Google Scholar] [CrossRef]
- Bagheri-Gavkosh, M.; Hosseini, S.M.; Ataie-Ashtiani, B.; Sohani, Y.; Ebrahimian, H.; Morovat, F.; Ashrafi, S. Land Subsidence: A Global Challenge. Sci. Total Environ. 2021, 778, 146193. [Google Scholar] [CrossRef]
- Erkens, G.; Bucx, T.; Dam, R.; De Lange, G.; Lambert, J. Sinking Coastal Cities. Proc. Int. Assoc. Hydrol. Sci. 2015, 372, 189–198. [Google Scholar] [CrossRef]
- Carbognin, L.; Teatini, P.; Tomasin, A.; Tosi, L. Global Change and Relative Sea Level Rise at Venice: What Impact in Term of Flooding. Clim. Dyn. 2010, 35, 1055–1063. [Google Scholar] [CrossRef]
- Herrera-García, G.; Ezquerro, P.; Tomas, R.; Béjar-Pizarro, M.; López-Vinielles, J.; Rossi, M.; Mateos, R.M.; Carreón-Freyre, D.; Lambert, J.; Teatini, P.; et al. Mapping the Global Threat of Land Subsidence. Science 2021, 371, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Törnqvist, T.E.; Bick, S.J.; van der Borg, K.; de Jong, A.F.M. How Stable Is the Mississippi Delta? Geology 2006, 34, 697–700. [Google Scholar] [CrossRef]
- Bucx, T.H.M.; Van Ruiten, C.J.M.; Erkens, G.; De Lange, G. An Integrated Assessment Framework for Land Subsidence in Delta Cities. Proc. Int. Assoc. Hydrol. Sci. 2015, 372, 485–491. [Google Scholar] [CrossRef]
- Zhu, L.; Franceschini, A.; Gong, H.; Ferronato, M.; Dai, Z.; Ke, Y.; Pan, Y.; Li, X.; Wang, R.; Teatini, P. The 3-D Facies and Geomechanical Modeling of Land Subsidence in the Chaobai Plain, Beijing. Water Resour. Res. 2020, 56, e2019WR027026. [Google Scholar] [CrossRef]
- He, X.C.; Yang, T.L.; Shen, S.L.; Xu, Y.S.; Arulrajah, A. Land Subsidence Control Zone and Policy for the Environmental Protection of Shanghai. Int. J. Environ. Res. Public Health 2019, 16, 2729. [Google Scholar] [CrossRef]
- Ye, S.; Xue, Y.; Wu, J.; Yan, X.; Yu, J. Progression and Mitigation of Land Subsidence in China. Hydrogeol. J. 2016, 24, 685–693. [Google Scholar] [CrossRef]
- Shen, S.L.; Xu, Y.S. Numerical Evaluation of Land Subsidence Induced by Groundwater Pumping in Shanghai. Can. Geotech. J. 2011, 48, 1378–1392. [Google Scholar] [CrossRef]
- Li, B.; Wang, Z.; An, J.; Zhou, C.; Ma, Y. Time-Series Analysis of Subsidence in Nanning, China, Based on Sentinel-1A Data by the SBAS InSAR Method. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 291–304. [Google Scholar] [CrossRef]
- Garg, S.; Motagh, M.; Indu, J.; Karanam, V. Tracking Hidden Crisis in India’s Capital from Space: Implications of Unsustainable Groundwater Use. Sci. Rep. 2022, 12, 651. [Google Scholar] [CrossRef]
- Chaussard, E.; Amelung, F.; Abidin, H.Z.; Hong, S.-H. Sinking Cities in Indonesia: ALOS PALSAR Detects Rapid Subsidence Due to Groundwater and Gas Extraction. Remote Sens. Environ. 2013, 128, 150–161. [Google Scholar] [CrossRef]
- Nakano, T.; Matsuda, I. A Note on Land Subsidence in Japan. Geogr. Rep. Tokyo Metrop. Univ. 1976, 11, 147–161. [Google Scholar]
- Na, T.; Kawamura, Y.; Kang, S.; Utsuki, S. Hazard Mapping of Ground Subsidence in East Area of Sapporo Using Frequency Ratio Model and GIS. Geomat. Nat. Hazards Risk 2021, 12, 347–362. [Google Scholar] [CrossRef]
- Yamamoto, S. Recent trend of land subsidence in Japan: S. Yamamoto, in: Land subsidence. Proc. international symposium, The Hague, 1995, ed F.B.J. Barends & others, (IAHS; Publications, 234), 1995, pp 487–492. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1996, 33, A297. [Google Scholar] [CrossRef]
- Weststrate, T.W. Urban Land Subsidence in the Netherlands; Radboud University: Nijmegen, The Netherlands, 2018. [Google Scholar]
- Muntendam-Bos, A.G.; Kleuskens, M.H.P.; Bakr, M.; De Lange, G.; Fokker, P.A. Unraveling Shallow Causes of Subsidence. Geophys. Res. Lett. 2009, 36, L10403. [Google Scholar] [CrossRef]
- Amos, C.L.; Umgiesser, G.; Tosi, L.; Townend, I.H. The Coastal Morphodynamics of Venice Lagoon, Italy: An Introduction. Cont. Shelf Res. 2010, 30, 837–846. [Google Scholar] [CrossRef]
- Brambati, A.; Carbognin, L.; Quaia, T.; Teatini, P.; Tosi, L. The Lagoon of Venice: Geological Setting, Evolution and Land Subsidence. Episodes 2003, 26, 264–265. [Google Scholar] [CrossRef] [PubMed]
- Teatini, P.; Baú, D.; Gambolati, G. Water-Gas Dynamics and Coastal Land Subsidence over Chioggia Mare Field, Northern Adriatic Sea. Hydrogeol. J. 2000, 8, 462–479. [Google Scholar] [CrossRef]
- Teatini, P.; Ferronato, M.; Gambolati, G.; Gonella, M. Groundwater Pumping and Land Subsidence in the Emilia-Romagna Coastland, Italy: Modeling the Past Occurrence and the Future Trend. Water Resour. Res. 2006, 42, 1–19. [Google Scholar] [CrossRef]
- Da Lio, C.; Strozzi, T.; Teatini, P.; Tosi, L. Computing the Relative Land Subsidence at Venice, Italy, over the Last Fifty Years. In Proceedings of the 22nd International Congress on Modelling and Simulation, Hobart, TAS, Australia, 3–8 December 2017; pp. 999–1005. [Google Scholar] [CrossRef]
- Corbau, C.; Simeoni, U.; Zoccarato, C.; Mantovani, G.; Teatini, P. Coupling Land Use Evolution and Subsidence in the Po Delta, Italy: Revising the Past Occurrence and Prospecting the Future Management Challenges. Sci. Total Environ. 2019, 654, 1196–1208. [Google Scholar] [CrossRef] [PubMed]
- Matano, F.; Sacchi, M.; Vigliotti, M.; Ruberti, D. Subsidence Trends of Volturno River Coastal Plain (Northern Campania, Southern Italy) Inferred by Sar Interferometry Data. Geosciences 2018, 8, 8. [Google Scholar] [CrossRef]
- Buffardi, C.; Barbato, R.; Vigliotti, M.; Mandolini, A.; Ruberti, D. The Holocene Evolution of the Volturno Coastal Plain (Northern Campania, Southern Italy): Implications for the Understanding of Subsidence Patterns. Water 2021, 13, 2692. [Google Scholar] [CrossRef]
- Amato, V.; Aucelli, P.P.C.; Corrado, G.; Di Paola, G.; Matano, F.; Pappone, G.; Schiattarella, M. Comparing Geological and Persistent Scatterer Interferometry Data of the Sele River Coastal Plain, Southern Italy: Implications for Recent Subsidence Trends. Geomorphology 2020, 351, 106953. [Google Scholar] [CrossRef]
- Corapcioglu, M.Y. Land Subsidence—A. A State-of-the-Art Review. In Fundamentals of Transport Phenomena in Porous Media; Springer: Dordrecht, The Netherlands, 1984; Volume 82, pp. 369–444. [Google Scholar] [CrossRef]
- Dinar, A.; Esteban, E.; Calvo, E.; Herrera, G.; Teatini, P.; Tomás, R.; Li, Y.; Ezquerro, P.; Albiac, J. We Lose Ground: Global Assessment of Land Subsidence Impact Extent. Sci. Total Environ. 2021, 786, 147415. [Google Scholar] [CrossRef]
- Jing, Z.; Wang, J.; Zhu, Y.; Feng, Y. Effects of Land Subsidence Resulted from Coal Mining on Soil Nutrient Distributions in a Loess Area of China. J. Clean. Prod. 2018, 177, 350–361. [Google Scholar] [CrossRef]
- Barends, F.B.J. Review of Subsidence Management in the Netherlands. IAHS-AISH Publ. 2010, 339, 385–395. [Google Scholar]
- Poland, J.F. Subsidence in United States Due to Ground-Water Withdrawal. J. Irrig. Drain. Div. ASCE 1981, 107, 115–135. [Google Scholar] [CrossRef]
- Romero-Navarro, M.A.; Pacheco-martínez, J.; Ortiz-Lozano, J.A.; Zermeño-De León, M.E.; Araiza-Garaygordobil, G.; Mendoza-Otero, E. Land Subsidence of the Aguascalientes Valley, México: Historical Review and Present Situation. IAHS-AISH Publ. 2010, 339, 207–209. [Google Scholar]
- Péwé, T.L. Land Subsidence and Earth-Fissure Formation Caused by Groundwater Withdrawal in Arizona; A Review. Spec. Pap. Geol. Soc. Am. 1990, 252, 219–233. [Google Scholar] [CrossRef]
- Wan, W.; Li, Y.; Zhang, J. Development of Land Subsidence in Xi’an in Past 50 Years. Adv. Mater. Res. 2010, 113–116, 1199–1207. [Google Scholar]
- Parker, A. Anthropogenic Drivers of Relative Sea-Level Rise in the Mekong Delta—A Review. Quaest. Geogr. 2020, 39, 109–124. [Google Scholar] [CrossRef]
- Calabrese, L.; Luciani, P.; Perini, L. A Review of Impact of Subsidence Induced by Gas Exploitation on Costal Erosion in Emilia-Romagna, Italy. Bull. Geophys. Oceanogr. 2021, 62, 279–300. [Google Scholar] [CrossRef]
- Momotake, M. Historical Review of Land Subsidence in Niigata City and Its Vicinity. Quat. Res. 1996, 35, 253–258. [Google Scholar] [CrossRef]
- Van Asselen, S.; Stouthamer, E.; van Asch, T.W.J. Effects of Peat Compaction on Delta Evolution: A Review on Processes, Responses, Measuring and Modeling. Earth-Sci. Rev. 2009, 92, 35–51. [Google Scholar] [CrossRef]
- Forrester, D.J.; Aston, T.R.C. A Review of Mining Subsidence Instrumentation and Its Potential Application for Seabed Monitoring. Min. Sci. Technol. 1987, 4, 225–240. [Google Scholar] [CrossRef]
- Ashraf, H.M.; Al-Sobhi, S.A.; El-Naas, M.H. Mapping the Desalination Journal: A Systematic Bibliometric Study over 54 Years. Desalination 2022, 526, 115535. [Google Scholar] [CrossRef]
- Rogers, M.; Bethel, A.; Briscoe, S. Resources for Forwards Citation Searching for Implementation Studies in Dementia Care: A Case Study Comparing Web of Science and Scopus. Res. Synth. Methods 2020, 11, 379–386. [Google Scholar] [CrossRef]
- Archambault, É.; Campbell, D.; Gingras, Y.; Larivière, V. Comparing Bibliometric Statistics Obtained from the Web of Science and Scopus. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1320–1326. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science Mapping Software Tools: Review, Analysis, and Cooperative Study among Tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Garnder, J.S. I.—Note in Explanation of Plate VII., to Illustrate the Theory of Subsidence and Elevation of Land, and the Permanence of Oceans. Geol. Mag. 1881, 8, 289. [Google Scholar] [CrossRef]
- Gardner, J.S. I.—Subsidence and Elevation, and on the Permanence of Oceans. Geol. Mag. 1881, 8, 241–245. [Google Scholar] [CrossRef]
- Spencer, J.W.W. On the Geological and Physical Development of Dominica; with Notes on Martinique, St. Lucia, St. Vincent, and the Grenadines. Q. J. Geol. Soc. Lond. 1902, 58, 341–353. [Google Scholar] [CrossRef]
- Oldham, R.D. The Age and Origin of the Lower Rhône. Q. J. Geol. Soc. Lond. 1934, 90, 445–461. [Google Scholar] [CrossRef]
- Maleki, H.; McKenzie, J. Review of U.S. Subsidence Monitoring Using Conventional and Satellite Based Methods. IOP Conf. Ser. Earth Environ. Sci. 2021, 833, 012154. [Google Scholar] [CrossRef]
- Simons, M.; Rosen, P.A. Interferometric Synthetic Aperture Radar Geodesy. In Treatise on Geophysics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 3, pp. 339–385. ISBN 9780444538031. [Google Scholar]
- Cao, T.; Han, D.; Song, X. Past, Present, and Future of Global Seawater Intrusion Research: A Bibliometric Analysis. J. Hydrol. 2021, 603, 126844. [Google Scholar] [CrossRef]
- Gumilar, I.; Abidin, H.Z.; Andreas, H.; Sidiq, T.P.; Gamal, M.; Fukuda, Y. Land Subsidence, Groundwater Extraction, and Flooding in Bandung Basin (Indonesia). Int. Assoc. Geod. Symp. 2014, 139, 167–173. [Google Scholar] [CrossRef]
- Sytnik, O.; Del Río, L.; Greggio, N.; Bonetti, J. Historical Shoreline Trend Analysis and Drivers of Coastal Change along the Ravenna Coast, NE Adriatic. Environ. Earth Sci. 2018, 77, 779. [Google Scholar] [CrossRef]
- Sahar, T.; Tarek, R.; Mennatallah, D. Drivers of Natural Hazards Vulnerability in Urban Waterfront of Alexandria, Egypt. Disaster Adv. 2019, 12, 9–14. [Google Scholar]
- Solihuddin, T.; Husrin, S.; Mustikasari, E.; Heriati, A.; Kepel, T.L.; Salim, H.L.; Risandi, J.; Dwiyanti, D. Coastal Inundation and Land Subsidence in North Coast of West Java: A New Hazard? IOP Conf. Ser. Earth Environ. Sci. 2021, 925, 012015. [Google Scholar] [CrossRef]
- Moschini, U.; Fenialdi, E.; Daraio, C.; Ruocco, G.; Molinari, E. A Comparison of Three Multidisciplinarity Indices Based on the Diversity of Scopus Subject Areas of Authors’ Documents, Their Bibliography and Their Citing Papers. Scientometrics 2020, 125, 1145–1158. [Google Scholar] [CrossRef]
- Nelson, F.E.; Anisimov, O.A.; Shiklomanov, N.I. Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions. Nat. Hazards 2002, 26, 203–225. [Google Scholar] [CrossRef]
- Seager, R.; Hooks, A.; Williams, A.P.; Cook, B.; Nakamura, J.; Henderson, N. Climatology, Variability, and Trends in the U.S. Vapor Pressure Deficit, an Important Fire-Related Meteorological Quantity. J. Appl. Meteorol. Climatol. 2015, 54, 1121–1141. [Google Scholar] [CrossRef]
- Westaway, R. The Quaternary Evolution of the Gulf of Corinth, Central Greece: Coupling between Surface Processes and Flow in the Lower Continental Crust. Tectonophysics 2002, 348, 269–318. [Google Scholar] [CrossRef]
- Blum, M.D.; Roberts, H.H. The Mississippi Delta Region: Past, Present, and Future. Annu. Rev. Earth Planet. Sci. 2012, 40, 655–683. [Google Scholar] [CrossRef]
- Thu, T.M.; Fredlund, D.G. Modelling Subsidence in the Hanoi City Area, Vietnam. Can. Geotech. J. 2000, 37, 621–637. [Google Scholar] [CrossRef]
- Tamburini, A.; Bianchi, M.; Giannico, C.; Novali, F. Retrieving Surface Deformation by PSInSARTM Technology: A Powerful Tool in Reservoir Monitoring. Int. J. Greenh. Gas Control. 2010, 4, 928–937. [Google Scholar] [CrossRef]
- Cheng, J.X.; Nie, X.J.; Liu, C.H. Spatial Variation of Soil Organic Carbon in Coal-Mining Subsidence Areas. Meitan Xuebao/J. China Coal Soc. 2014, 39, 2495–2500. [Google Scholar] [CrossRef]
- Yang, J.L.; Cao, G.L.; Li, H.; Li, J.; Hu, Y.Z.; Xu, Q.M.; Qin, Y.F.; Du, D.; Fang, C. Study of Natural Consolidation of Late Cenozoic Era Clay and Land Subsidence in Tianjin Coastal Area. Yantu Lixue/Rock Soil Mech. 2014, 35, 2579–2586. [Google Scholar]
- Hu, Z.Q.; Shao, F.; Duo, L.H.; Wu, S.Y.; Li, X.Y.; McSweeney, K. Technique of Reclaiming Subsided Land with Yellow River Sediments in the Form of Spaced Strips. Meitan Xuebao/J. China Coal Soc. 2017, 42, 557–566. [Google Scholar] [CrossRef]
- Ward, P.J.; Pauw, W.P.; van Buuren, M.W.; Marfai, M.A. Governance of Flood Risk Management in a Time of Climate Change: The Cases of Jakarta and Rotterdam. Environ. Polit. 2013, 22, 518–536. [Google Scholar] [CrossRef]
- Rodolfo, K.S.; Siringan, F.P. Global Sea-Level Rise Is Recognised, but Flooding from Anthropogenic Land Subsidence Is Ignored around Northern Manila Bay, Philippines. Disasters 2006, 30, 118–139. [Google Scholar] [CrossRef]
- De Moel, H.; Aerts, J.C.J.H.; Koomen, E. Development of Flood Exposure in the Netherlands during the 20th and 21st Century. Glob. Environ. Chang. 2011, 21, 620–627. [Google Scholar] [CrossRef]
- Ojha, C.; Werth, S.; Shirzaei, M. Groundwater Loss and Aquifer System Compaction in San Joaquin Valley During 2012–2015 Drought. J. Geophys. Res. Solid Earth 2019, 124, 3127–3143. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.S.; Santos, I.C.; Oliveira, K.D.S.; Leão, N.C.A. Meta-Analysis as a Research Tool: A Systematic Review of Bibliometric Studies in Administration. Rev. Adm. Mackenzie 2019, 20, 190186. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Manual de VOSviewer; Univeristeit Leiden: Leiden, The Netherlands, 2021. [Google Scholar]
- Kok, S.; Costa, A.L. Framework for Economic Cost Assessment of Land Subsidence. Nat. Hazards 2021, 106, 1931–1949. [Google Scholar] [CrossRef]
- Medina-Mijangos, R.; Seguí-Amórtegui, L. Research Trends in the Economic Analysis of Municipal Solid Waste Management Systems: A Bibliometric Analysis from 1980 to 2019. Sustainability 2020, 12, 8509. [Google Scholar] [CrossRef]
- Cao, G.; Han, D.; Moser, J. Groundwater Exploitation Management under Land Subsidence Constraint: Empirical Evidence from the Hangzhou-Jiaxing-Huzhou Plain, China. Environ. Manag. 2013, 51, 1109–1125. [Google Scholar] [CrossRef]
- Castellazzi, P.; Garfias, J.; Martel, R. Assessing the Efficiency of Mitigation Measures to Reduce Groundwater Depletion and Related Land Subsidence in Querétaro (Central Mexico) from Decadal InSAR Observations. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102632. [Google Scholar] [CrossRef]
- Wu, J.; Shi, X.; Ye, S.; Xue, Y.; Zhang, Y.; Wei, Z.; Fang, Z. Numerical Simulation of Viscoelastoplastic Land Subsidence Due to Groundwater Overdrafting in Shanghai, China. J. Hydrol. Eng. 2010, 15, 223–236. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, F.; Liu, L.; Song, X. Realization of Land Subsidence and Groundwater Flow Coupling Model Based on Modflow. Yingyong Jichu Yu Gongcheng Kexue Xuebao/J. Basic Sci. Eng. 2016, 24, 253–261. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Hoffmann, J.; Zebker, H.A.; Galloway, D.L.; Amelung, F. Seasonal Subsidence and Rebound in Las Vegas Valley, Nevada, Observed by Synthetic Aperture Radar Interferometry. Water Resour. Res. 2001, 37, 1551–1566. [Google Scholar] [CrossRef]
- Noferini, L.; Pieraccini, M.; Luzi, G.; Mecatti, D.; Macaluso, G.; Atzeni, C. Ground-Based Radar Interferometry for Terrain Mapping. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Denver, CO, USA, 31 July–4 August 2006; pp. 2569–2572. [Google Scholar]
- Coleman, J.M.; Smith, W.G. Late Recent Rise of Sea Level. Bull. Geol. Soc. Am. 1964, 75, 833–840. [Google Scholar] [CrossRef]
- Dietz, R.S. Marine Geology of Northwestern Pacific: Description of Japanese Bathymetric Chart 6901. Bull. Geol. Soc. Am. 1954, 65, 1199–1224. [Google Scholar] [CrossRef]
- Krause, D.C. Tectonics, Marine Geology, and Bathymetry of the Celebes Sea-Sulu Sea Region. Bull. Geol. Soc. Am. 1966, 77, 813–832. [Google Scholar] [CrossRef]
- Poland, J.F.; Davis, G.H. Land Subsidence Due to Withdrawal of Fluids. GSA Rev. Eng. Geol. 1969, 2, 187–269. [Google Scholar] [CrossRef]
- Helm, D.C. One-dimensional Simulation of Aquifer System Compaction near Pixley, California: 2. Stress-Dependent Parameters. Water Resour. Res. 1976, 12, 375–391. [Google Scholar] [CrossRef]
- Darmody, R.G.; Steiner, J.S.; Jansen, I.J.; Carmer, S.G. Agricultural Impacts of Coal Mine Subsidence: Evaluation of Three Assay Methods. J. Environ. Qual. 1988, 17, 510–513. [Google Scholar] [CrossRef]
- Dijker, A.J.M. Physical Constraints on the Evolution of Cooperation. Evol. Biol. 2011, 38, 124–143. [Google Scholar] [CrossRef]
- Lamoreaux, P.E. Catastrophic Subsidence, Shelby County, Alabama. In Proceedings of the Multidisciplinary Conference on Sinkholes. 1., Orlando, FL, USA, 15–17 October 1984; pp. 131–136. [Google Scholar]
- Zhen, L.; Routray, J.K. Groundwater Resource Use Practices and Implications for Sustainable Agricultural Development in the North China Plain: A Case Study in Ningjin County of Shandong Province, PR China. Int. J. Water Resour. Dev. 2002, 18, 581–593. [Google Scholar] [CrossRef]
- Wu, Q.; Zheng, X.; Xu, H.; Ying, Y.; Hou, Y.; Xie, X.; Wang, S. Relative Sea-Level Rising and Its Control Strategy in Coastal Regions of China in the 21st Century. Sci. China Ser. D Earth Sci. 2003, 46, 74–83. [Google Scholar] [CrossRef]
- Das Gupta, A.; Babel, M.S. Challenges for Sustainable Management of Groundwater Use in Bangkok, Thailand. Int. J. Water Resour. Dev. 2005, 21, 453–464. [Google Scholar] [CrossRef]
- Del Carmen Ortiz Zamora, D.; Guerrero, M.A.O. Origen y Evolución de Un Nuevo Lago En La Planicie de Chalco: Implicaciones de Peligro Por Subsidence e Inundación de Áreas Urbanas En Valle de Chalco (Sstado de México) y Tláhuac (Distrito Federal). Investig. Geogr. 2007, 64, 26–42. [Google Scholar]
- Onodera, S.-I.; Saito, M.; Sawano, M.; Hosono, T.; Taniguchi, M.; Shimada, J.; Umezawa, Y.; Lubis, R.F.; Buapeng, S.; Delinom, R. Effects of Intensive Urbanization on the Intrusion of Shallow Groundwater into Deep Groundwater: Examples from Bangkok and Jakarta. Sci. Total Environ. 2008, 404, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Tokunaga, T.; Aichi, M.; Shimada, J.; Taniguchi, M. Effects of Human Activities and Urbanization on Groundwater Environments: An Example from the Aquifer System of Tokyo and the Surrounding Area. Sci. Total Environ. 2009, 407, 3165–3172. [Google Scholar] [CrossRef]
- Busico, G.; Buffardi, C.; Ntona, M.M.; Vigliotti, M.; Colombani, N.; Mastrocicco, M.; Ruberti, D. Actual and Forecasted Vulnerability Assessment to Seawater Intrusion via Galdit-Susi in the Volturno River Mouth (Italy). Remote Sens. 2021, 13, 3632. [Google Scholar] [CrossRef]
- Carisi, F.; Domeneghetti, A.; Gaeta, M.G.; Castellarin, A. Is Anthropogenic Land Subsidence a Possible Driver of Riverine Flood-Hazard Dynamics? A Case Study in Ravenna, Italy. Hydrol. Sci. J. 2017, 62, 2440–2455. [Google Scholar] [CrossRef]
- Van Khanh Triet, N.; Viet Dung, N.; Fujii, H.; Kummu, M.; Merz, B.; Apel, H. Has Dyke Development in the Vietnamese Mekong Delta Shifted Flood Hazard Downstream? Hydrol. Earth Syst. Sci. 2017, 21, 3991–4010. [Google Scholar] [CrossRef]
- Tosi, L.; Da Lio, C.; Donnici, S.; Strozzi, T.; Teatini, P. Vulnerability of Venice’s Coastland to Relative Sea-Level Rise. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 689–695. [Google Scholar] [CrossRef]
- Esteban, M.; Takagi, H.; Onuki, M.; Chadwick, C.; Shibayama, T.; Jamero, M.L.; Fatma, D.; Mikami, T.; Valenzuela, P.; Crichton, R. Adaptation to Sea Level Rise in Densely Populated Coastal Areas: Learning from Examples of Land Subsidence in Japan, Indonesia and the Philippines. In Proceedings of the APAC 2019—Proc. 10th International Conference on Asian and Pacific Coasts, Hanoi, Vietnam, 25–28 September 2019; pp. 1185–1192. [Google Scholar] [CrossRef]
- Rezaei, A.; Mousavi, Z. Characterization of Land Deformation, Hydraulic Head, and Aquifer Properties of the Gorgan Confined Aquifer, Iran, from InSAR Observations. J. Hydrol. 2019, 579, 124196. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, B.; Yao, Y.; Wu, W.; Meng, G.; Chen, Q. Geodetic and Hydrological Measurements Reveal the Recent Acceleration of Groundwater Depletion in North China Plain. J. Hydrol. 2019, 575, 1065–1072. [Google Scholar] [CrossRef]
- Andaryani, S.; Nourani, V.; Trolle, D.; Dehgani, M.; Asl, A.M. Assessment of Land Use and Climate Change Effects on Land Subsidence Using a Hydrological Model and Radar Technique. J. Hydrol. 2019, 578, 124070. [Google Scholar] [CrossRef]
- Ghazifard, A.; Moslehi, A.; Safaei, H.; Roostaei, M. Effects of Groundwater Withdrawal on Land Subsidence in Kashan Plain, Iran. Bull. Eng. Geol. Environ. 2016, 75, 1157–1168. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Chen, Y.; Li, X.; Zhou, C.; Lei, K.; Zhu, L.; Duan, L.; Zhao, X. Land Subsidence and Its Relation with Groundwater Aquifers in Beijing Plain of China. Sci. Total Environ. 2020, 735, 139111. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, A.H.M.; Lian, X.; Zhu, Q.; Horgan, F.G.; Zhang, Q. Analysis of the Impact of the South-to-North Water Diversion Project on Water Balance and Land Subsidence in Beijing, China between 2007 and 2020. J. Hydrol. 2021, 603, 126990. [Google Scholar] [CrossRef]
- Nasiri, A.; Shafiee, N.; Zandi, R. Spatial Analysis of Factors Influencing Land Subsidence Using the OLS Model (Case Study: Fahlian Aquifer). Earth Sci. Inform. 2021, 14, 2133–2144. [Google Scholar] [CrossRef]
- Liu, Y.; Du, T.; Huang, H.; Liu, Y.; Zhang, Y. Estimation of Sediment Compaction and Its Relationship with River Channel Distributions in the Yellow River Delta, China. Catena 2019, 182, 104113. [Google Scholar] [CrossRef]
- Mirzaii, Z.; Hasanlou, M.; Samieie-Esfahany, S.; Rojhani, M.; Ajourlou, P. Insar Time Series Investigation of Land Surface Deformation in Azar Oil Field. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2019, 42, 733–736. [Google Scholar] [CrossRef]
- Jiang, S.; Shi, F.; Hu, B.; Wang, W.; Lin, Q. Monitoring of the Ground Subsidence in Macao Using the PSI Technique. In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2018; Volume 848, pp. 250–261. ISBN 9789811308925. [Google Scholar]
- Li, R.; Li, Z.; Han, J.; Lu, P.; Qiao, G.; Meng, X.; Hao, T.; Zhou, F. Monitoring Surface Deformation of Permafrost in Wudaoliang Region, Qinghai–Tibet Plateau with ENVISAT ASAR Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102527. [Google Scholar] [CrossRef]
- Kim, K.D.; Lee, S.; Oh, H.J.; Choi, J.K.; Won, J.S. Assessment of Ground Subsidence Hazard near an Abandoned Underground Coal Mine Using GIS. Environ. Geol. 2006, 50, 1183–1191. [Google Scholar] [CrossRef]
- Rahmati, O.; Falah, F.; Naghibi, S.A.; Biggs, T.; Soltani, M.; Deo, R.C.; Cerdà, A.; Mohammadi, F.; Tien Bui, D. Land Subsidence Modelling Using Tree-Based Machine Learning Algorithms. Sci. Total Environ. 2019, 672, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Carnec, C.; Delacourt, C. Three Years of Mining Subsidence Monitored by SAR Interferometry, near Gardanne, France. J. Appl. Geophys. 2000, 43, 43–54. [Google Scholar] [CrossRef]
- López-Quiroz, P.; Doin, M.P.; Tupin, F.; Briole, P.; Nicolas, J.M. Time Series Analysis of Mexico City Subsidence Constrained by Radar Interferometry. J. Appl. Geophys. 2009, 69, 1–15. [Google Scholar] [CrossRef]
- Blasco, J.M.D.; Foumelis, M.; Stewart, C.; Hooper, A. Measuring Urban Subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sens. 2019, 11, 129. [Google Scholar] [CrossRef]
- Fergason, K.C.; Rucker, M.L.; Panda, B.B.; Greenslade, M.D. Investigative Procedures for Assessing Subsidence and Earth Fissure Risk for Dams and Levees. In Engineering Geology for Society and Territory—Volume 6: Applied Geology for Major Engineering Projects; Springer International Publishing: Cham, Switzerland, 2015; pp. 695–698. ISBN 9783319090603. [Google Scholar]
- Benveniste, J.; Cazenave, A.; Vignudelli, S.; Fenoglio-Marc, L.; Shah, R.; Almar, R.; Andersen, O.; Birol, F.; Bonnefond, P.; Bouffard, J.; et al. Requirements for a Coastal Hazards Observing System. Front. Mar. Sci. 2019, 6, 348. [Google Scholar] [CrossRef]
- Fiaschi, S.; Wdowinski, S. Local Land Subsidence in Miami Beach (FL) and Norfolk (VA) and Its Contribution to Flooding Hazard in Coastal Communities along the U.S. Atlantic Coast. Ocean Coast. Manag. 2020, 187, 105078. [Google Scholar] [CrossRef]
- Herzer, R.H.; Chaproniere, G.C.H.; Edwards, A.R.; Hollis, C.J.; Pelletier, B.; Raine, J.I.; Scott, G.H.; Stagpoole, V.; Strong, C.P.; Symonds, P.; et al. Seismic Stratigraphy and Structural History of the Reinga Basin and Its Margins, Southern Norfolk Ridge System. N. Z. J. Geol. Geophys. 1997, 40, 425–451. [Google Scholar] [CrossRef]
- Hayward, B.W. Foraminifera-Based Estimates of Paleobathymetry Using Modern Analogue Technique, and the Subsidence History of the Early Miocene Waitemata Basin. N. Z. J. Geol. Geophys. 2004, 47, 749–767. [Google Scholar] [CrossRef]
- Kroeger, K.F.; Thrasher, G.P.; Sarma, M. The Evolution of a Middle Miocene Deep-Water Sedimentary System in Northwestern New Zealand (Taranaki Basin): Depositional Controls and Mechanisms. Mar. Pet. Geol. 2019, 101, 355–372. [Google Scholar] [CrossRef]
- Catalao, J.; Raju, D.; Nico, G. Insar Maps of Land Subsidence and Sea Level Scenarios to Quantify the Flood Inundation Risk in Coastal Cities: The Case of Singapore. Remote Sens. 2020, 12, 296. [Google Scholar] [CrossRef]
- Arora, A.; Arabameri, A.; Pandey, M.; Siddiqui, M.A.; Shukla, U.K.; Bui, D.T.; Mishra, V.N.; Bhardwaj, A. Optimization of State-of-the-Art Fuzzy-Metaheuristic ANFIS-Based Machine Learning Models for Flood Susceptibility Prediction Mapping in the Middle Ganga Plain, India. Sci. Total Environ. 2021, 750, 141565. [Google Scholar] [CrossRef] [PubMed]
- Jago-on, K.A.B.; Kaneko, S.; Fujikura, R.; Fujiwara, A.; Imai, T.; Matsumoto, T.; Zhang, J.; Tanikawa, H.; Tanaka, K.; Lee, B.; et al. Urbanization and Subsurface Environmental Issues: An Attempt at DPSIR Model Application in Asian Cities. Sci. Total Environ. 2009, 407, 3089–3104. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Shao, Y.; Ma, G.; Qin, Z. The Application of Remote Sensing Technology in Monitoring Environmental Disasters of Mining Cites. In Proceedings of the 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009; pp. 1–5. [Google Scholar]
- Takagi, H.; Esteban, M.; Mikami, T.; Fujii, D. Projection of Coastal Floods in 2050 Jakarta. Urban Clim. 2016, 17, 135–145. [Google Scholar] [CrossRef]
Subject Areas Included | Subject Areas Excluded |
---|---|
Agricultural and Biological Sciences Chemistry Computer Science Decision Sciences Earth and Planetary Sciences Energy Engineering Environmental Science Mathematics Physics and Astronomy Social Sciences | Arts and Humanities Biochemistry, Genetics and Molecular Biology Business, Management and Accounting Chemical Engineering Dentistry Economics, Econometrics and Finance Immunology Medicine Multidisciplinary Pharmacology, Toxicology and Pharmaceutic |
Countries | Natural | Layer Compaction/ Consolidation | Tectonic | Fault | Groundwater Extraction | Mining | Oil/Gas Extraction | Land Use Change |
---|---|---|---|---|---|---|---|---|
Australia | X | X | X | X | ||||
Canada | X | X | ||||||
China | X | |||||||
France | X | X | X | |||||
Germany | X | X | ||||||
India | X | X | X | |||||
Indonesia | X | X | X | |||||
Italy | X | X | X | X | X | X | X | |
Iran | X | X | ||||||
Japan | X | X | X | |||||
Mexico | X | X | X | X | X | X | X | X |
New Zeland | X | X | X | X | ||||
Poland | X | X | X | X | X | X | X | |
Russia | X | X | X | X | X | X | ||
South Korea | X | X | X | |||||
Spain | X | X | X | X | ||||
Swizerland | X | X | ||||||
Taiwan | X | X | ||||||
Thailandia | X | X | ||||||
The Netherlands | X | X | X | |||||
United Kingdom | X | X | X | X | ||||
United States | X | X | X | X | X | X | X | X |
Vietnam | X | X | X | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buffardi, C.; Ruberti, D. The Issue of Land Subsidence in Coastal and Alluvial Plains: A Bibliometric Review. Remote Sens. 2023, 15, 2409. https://doi.org/10.3390/rs15092409
Buffardi C, Ruberti D. The Issue of Land Subsidence in Coastal and Alluvial Plains: A Bibliometric Review. Remote Sensing. 2023; 15(9):2409. https://doi.org/10.3390/rs15092409
Chicago/Turabian StyleBuffardi, Carla, and Daniela Ruberti. 2023. "The Issue of Land Subsidence in Coastal and Alluvial Plains: A Bibliometric Review" Remote Sensing 15, no. 9: 2409. https://doi.org/10.3390/rs15092409
APA StyleBuffardi, C., & Ruberti, D. (2023). The Issue of Land Subsidence in Coastal and Alluvial Plains: A Bibliometric Review. Remote Sensing, 15(9), 2409. https://doi.org/10.3390/rs15092409