An Efficient Calibration System of Optical Interferometer for Measuring Middle and Upper Atmospheric Wind
Abstract
:1. Introduction
2. Instrument Concept
3. Experimental Demonstration
3.1. Experimental Setup
3.2. Beat Frequency Obtaining
3.3. Experimental Processes and Results
4. ASHS-Type Interferometer Calibration
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelley, M.C. The Earth’s Ionosphere Plasma Physics and Electrodynamics; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Hedin, A.E.; Fleming, E.L.; Manson, A.H. Empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Terr. Phys. 1989, 58, 1421–1447. [Google Scholar] [CrossRef]
- Larsen, M.F. Winds and shears in the mesosphere and lower thermosphere: Results from four decades of chemical release wind measurements. J. Geophys. Res. Atmos. 2002, 107, SIA 28-1–SIA 28-14. [Google Scholar] [CrossRef]
- Christensen, A.B.; Spann, J.; Cyr, O.C. Heliophysics: The Solar and Space Physics of a New Era. In Recommended Roadmap for Science and Technology 2009–2030; PB2010-100211; NASA Advisory Council: Washington, DC, USA, 2009. [Google Scholar]
- Makela, J.J.; Meriwether, J.W.; Lima, J.P.; Miller, E.S.; Armstrong, S.J. The Remote Equatorial Nighttime Observatory of Ionospheric Regions Project and the International Heliospherical Year. Earth Moon Planets 2009, 104, 211–226. [Google Scholar] [CrossRef]
- Meriwether, J. Studies of thermospheric dynamics with a Fabry–Perot interferometer network: A review. J. Atmos. Sol.-Terr. Phys. 2006, 68, 1576–1589. [Google Scholar] [CrossRef]
- Hersom, C.H.; Shepherd, G.G. Characterization of the Wind Imaging Interferometer. Appl. Opt. 1995, 34, 2871–2879. [Google Scholar] [CrossRef] [PubMed]
- Hays, P.B.; Killeen, T.L.; Kennedy, B.C. The Fabry-Perot Interferometer on Dynamics Explorer. Space Sci. Instrum. 1981, 5, 395–416. [Google Scholar]
- McLandress, C.; Shepherd, G.G.; Solheim, B.H.; Burrage, M.D.; Hays, P.B.; Skinner, W.R. Combined mesosphere/thermosphere winds using WINDII and HRDI data from the Upper Atmosphere Research Satellite. J. Geophys. Res. Atmos. 1996, 101, 10441–10453. [Google Scholar] [CrossRef]
- Killeen, T.L.; Wu, Q.; Solomon, S.; Ortland, D.A.; Skinner, W.R.; Niciejewski, R.J.; Gell, D.A. TIMED Doppler Interferometer: Overview and recent results. J. Geophys. Res. Atmos. 2006, 111, A10S01. [Google Scholar] [CrossRef]
- Englert, C.R.; Harlander, J.M.; Brown, C.M. Michelson Interferometer for Global High-Resolution Thermospheric Imaging(MIGHTI): Instrument Design and Calibration. Space Sci. Rev. 2017, 212, 553–584. [Google Scholar] [CrossRef]
- Nakajima, H.; Okano, S.; Fukunishi, H.; Ono, T. Observations of thermospheric wind velocities and temperatures by the use of a Fabry–Perot Doppler imaging system at Syowa Station, Antarctica. Appl. Opt. 1995, 34, 8382–8395. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Z.; Xu, J. Introduction to Chinese Meridian Project-Phase II. Chin. J. Space Sci. 2020, 5, 718–722. [Google Scholar] [CrossRef]
- Kristoffersen, S.K.; Ward, W.E.; Brown, S.; Drummond, J.R. Calibration and validation of the advanced E-Region Wind Interferometer. Atmos. Meas. Technol. 2012, 6, 8271–8311. [Google Scholar] [CrossRef] [Green Version]
- Englert, C.R.; Babcock, D.D.; Harlander, J.M. Doppler asymmetric spatial heterodyne spectroscopy (DASH): Concept and experimental demonstration. Appl. Opt. 2007, 46, 7297–7307. [Google Scholar] [CrossRef] [Green Version]
- Englert, C.R.; Harlander, J.M.; Babcock, D.D. Doppler Asymmetric Spatial Heterodyne Spectroscopy (DASH): An Innovative Concept for Measuring Winds in Planetary Atmospheres; 63030T-1; SPIE: San Diego, CA, USA, 2006. [Google Scholar]
- Babcock, D.D. Development of a Space Flight Prototype Doppler Asymmetric Spatial Heterodyne (DASH) Spectrometer for the Measurement of Upper Atmospheric Winds; Air Force Research Laboratory: Hanscom, MA, USA, 2011; Available online: http://www.dtic.mil (accessed on 6 January 2012).
- Wei, D.; Gong, Q.; Chen, Q.; Zhu, Y.; Kaufmann, M.; Olschewski, F.; Knieling, P.; Doetzer, F.; Mantel, K.; Xu, J.; et al. Modeling and correction of fringe patterns in Doppler asymmetric spatial heterodyne interferometry. Appl. Opt. 2022, 61, 10528. [Google Scholar] [CrossRef] [PubMed]
- Jing, S. Doppler Asymmetric Spatial Heterodyne Technique for Wind Detection in the Upper Atmosphere. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2017. [Google Scholar]
- Harlander, J.M.; Englert, C.R. Laboratory demonstration of mini-MIGHTI: A prototype sensor for thermospheric red-line (630 nm) neutral wind measurements from a 6U CubeSat. J. Atmos. Sol.-Terr. Phys. 2020, 207, 105363. [Google Scholar] [CrossRef]
- Lekavich, J. Basics of acousto-optic devices. Lasers Appl. 1986, 4, 59. [Google Scholar]
- Shepherd, G.G.; Thuillier, G.; Gault, W.A. WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite. J. Geophys. Res. Atmos. 1993, 98, 10725–10750. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, X.; Xu, J.; Zhou, Q.; Jiang, G.; Ma, R. FPI observations of nighttime mesospheric and thermospheric winds in China and their comparisons with HWM07. Ann. Geophys. 2013, 31, 1365–1378. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.; Xiong, C.; Stolle, C.; Xu, J.; Yuan, W.; Makela, J.J.; Harding, B.J.; Kerr, R.B.; March, G.; Siemes, C. Comparison of Thermospheric Winds Measured by GOCE and Ground-Based FPIs at Low and Middle Latitudes. J. Geophys. Res. Space Phys. 2020, 126, e2020JA028182. [Google Scholar] [CrossRef]
- Wei, D.; Zhu, Y.; Liu, J.; Gong, Q.; Kaufmann, M.; Olschewski, F.; Knieling, P.; Xu, J.; Koppmann, R.; Riese, M. Thermally stable monolithic Doppler asymmetric spatial heterodyne interferometer: Optical design and laboratory performance. Opt. Express 2020, 28, 19887–19900. [Google Scholar] [CrossRef]
- Englert, C.R.; Harlander, J.M.; Emmert, J.T.; Babcock, D.D.; Roesler, F.L. Initial ground-based thermospheric wind measurements using Doppler asymmetric spatial heterodyne spectroscopy (DASH). Opt. Express 2010, 18, 27416–27430. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, G.; Zhu, Y.; Kaufmann, M.; Wang, T.; Liu, W.; Xu, J. An Efficient Calibration System of Optical Interferometer for Measuring Middle and Upper Atmospheric Wind. Remote Sens. 2023, 15, 1898. https://doi.org/10.3390/rs15071898
Zhu G, Zhu Y, Kaufmann M, Wang T, Liu W, Xu J. An Efficient Calibration System of Optical Interferometer for Measuring Middle and Upper Atmospheric Wind. Remote Sensing. 2023; 15(7):1898. https://doi.org/10.3390/rs15071898
Chicago/Turabian StyleZhu, Guangyi, Yajun Zhu, Martin Kaufmann, Tiancai Wang, Weijun Liu, and Jiyao Xu. 2023. "An Efficient Calibration System of Optical Interferometer for Measuring Middle and Upper Atmospheric Wind" Remote Sensing 15, no. 7: 1898. https://doi.org/10.3390/rs15071898
APA StyleZhu, G., Zhu, Y., Kaufmann, M., Wang, T., Liu, W., & Xu, J. (2023). An Efficient Calibration System of Optical Interferometer for Measuring Middle and Upper Atmospheric Wind. Remote Sensing, 15(7), 1898. https://doi.org/10.3390/rs15071898