The Spatial Analysis of Vegetation Cover and Permafrost Degradation for a Subarctic Palsa Mire Based on UAS Photogrammetry and GPR Data in the Kola Peninsula
Abstract
:1. Introduction
2. Study Site
3. Methods
4. UAS Photogrammetry
5. Ground-Penetrating Radar Measurements
6. Machine Learning for Land Cover Classification
- Valley: TPI ≤ −1 SD;
- Lower slope: −1 SD < TPI ≤ −0.5 SD;
- Flat area: −0.5 SD < TPI < 0.5 SD, slope ≤ 5°;
- Middle slope: −0.5 SD < TPI < 0.5 SD, slope > 5°;
- Upper slope: 0.5 SD < TPI ≤ 1 SD;
- Ridge: TPI > 1 SD.
7. Results
8. Discussion
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hofgaard, A. Effects of climate change on the distribution and development of palsa peatlands: Background and suggestions for a national monitoring project. NINA Proj. Rep. 2003, 21, 1–32. [Google Scholar]
- Luoto, M.; Heikkinen, R.K.; Carter, T.R. Loss of palsa mires in Europe and biological consequences. Environ. Conserv. 2004, 31, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Fronzek, S.; Carter, T.R.; Räisänen, J.; Ruokolainen, L.; Luoto, M. Applying probabilistic projections of climate change with impact models: A case study for sub-arctic palsa mires in Fennoscandia. Clim. Change 2010, 99, 515–534. [Google Scholar] [CrossRef]
- Sannel, A.B.K.; Hugelius, G.; Jansson, P.; Kuhry, P. Permafrost Warming in a Subarctic Peatland—Which Meteorological Controls are Most Important? Permafr. Periglac. Process. 2016, 27, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Borge, A.F.; Westermann, S.; Solheim, I.; Etzelmüller, B. Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years. Cryosphere 2017, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Olvmo, M.; Holmer, B.; Thorsson, S.; Reese, H.; Lindberg, F. Sub-arctic palsa degradation and the role of climatic drivers in the largest coherent palsa mire complex in Sweden (Vissátvuopmi), 1955–2016. Sci. Rep. 2020, 10, 8937. [Google Scholar] [CrossRef]
- Piilo, S.R.; Väliranta, M.M.; Amesbury, M.J.; Aquino-López, M.A.; Charman, D.J.; Gallego-Sala, A.; Garneau, M.; Koroleva, N.; Kärppä, M.; Laine, A.M.; et al. Consistent centennial-scale change in European sub-Arctic peatland vegetation toward Sphagnum dominance—Implications for carbon sink capacity. Glob. Change Biol. 2023, 29, 1530–1544. [Google Scholar] [CrossRef]
- Fewster, R.E.; Morris, P.J.; Ivanovic, R.F.; Swindles, G.T.; Peregon, A.M.; Smith, C.J. Imminent loss of climate space for permafrost peatlands in Europe and Western Siberia. Nat. Clim. Change 2022, 12, 373–379. [Google Scholar] [CrossRef]
- Könönen, O.H.; Karjalainen, O.; Aalto, J.; Luoto, M.; Hjort, J. Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale. Cryosphere Discuss. 2022. preprint. [Google Scholar] [CrossRef]
- Sim, T.G.; Swindles, G.T.; Morris, P.J.; Baird, A.J.; Cooper, C.L.; Gallego-Sala, A.V.; Charman, D.J.; Roland, T.P.; Borken, W.; Mullan, D.J.; et al. Divergent responses of permafrost peatlands to recent climate change. Environ. Res. Lett. 2021, 16, 034001. [Google Scholar] [CrossRef]
- Zhang, H.; Väliranta, M.; Swindles, G.T.; Aquino-López, M.A.; Mullan, D.; Tan, N.; Amesbury, M.; Babeshko, K.V.; Bao, K.; Bobrov, A.; et al. Recent Climate Change Has Driven Divergent Hydrological Shifts in High-Latitude Peatlands. Nat. Commun. 2022, 13, 4959. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seppälä, M. The origin of palsas. Geogr. Ann. Ser. A 1986, 68, 141–147. [Google Scholar] [CrossRef]
- Gurney, S.D. Aspects of the genesis, geomorphology and terminology of palsas: Perennial cryogenic mounds. Prog. Phys. Geogr. 2001, 25, 249–260. [Google Scholar] [CrossRef]
- Seppälä, M. Synthesis of studies of palsa formation underlining the importance of local environmental and physical characteristics. Quat. Res. 2011, 75, 366–370. [Google Scholar] [CrossRef]
- Ballantyne, C.K. Periglacial Geomorphology; John Wiley & Sons: Hoboken, NJ, USA, 2018; 472 p. [Google Scholar]
- Matthews, J.A.; Nesje, A. Scandinavia. In Periglacial Landscapes of Europe; Springer International Publishing: Cham, Switzerland, 2022; pp. 365–426. [Google Scholar] [CrossRef]
- Jaworski, T. The morphology of peat bog surfaces on Hermansenøya, NW Svalbard. Polar Sci. 2017, 11, 83–95. [Google Scholar] [CrossRef]
- Fillion, M.-È.; Bhiry, N.; Touazi, M. Differential Development of Two Palsa Fields in a Peatland Located near Whapmagoostui-Kuujjuarapik, Northern Québec, Canada. Arct. Antarct. Alp. Res. 2014, 46, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Jorgenson, M.T.; Harden, J.; Kanevskiy, M.; O’Donnell, J.; Wickland, K.; Ewing, S.; Manies, K.; Zhuang, Q.; Shur, Y.; Striegl, R.; et al. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environ. Res. Lett. 2013, 8, 035017. [Google Scholar] [CrossRef]
- Mamet, S.D.; Chun, K.P.; Kershaw, G.G.; Loranty, M.M.; Kershaw, P.G. Recent increases in permafrost thaw rates and areal loss of palsas in the Western Northwest Territories, Canada. Permafr. Periglac. Process. 2017, 28, 619–633. [Google Scholar] [CrossRef]
- Jean, M.; Payette, S. Effect of vegetation cover on the ground thermal regime of wooded and non-wooded palsas. Permafr. Periglac. Process. 2014, 25, 281–294. [Google Scholar] [CrossRef]
- Limpens, J.; Fijen, T.P.; Keizer, I.; Meijer, J.; Olsthoorn, F.; Pereira, A.; Postma, R.; Suyker, M.; Vasander, H.; Holmgren, M. Shrubs and degraded permafrost pave the way for tree establishment in subarctic peatlands. Ecosystems 2021, 24, 370–383. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Bond-Lamberty, B.; Euskirchen, E.; Talbot, J.; Frolking, S.; McGuire, A.D.; Tuittila, E.S. The resilience and functional role of moss in boreal and arctic ecosystems. New Phytol. 2012, 196, 49–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Piilo, S.R.; Amesbury, M.J.; Charman, D.J.; Gallego-Sala, A.V.; Väliranta, M.M. The role of climate change in regulating Arctic permafrost peatland hydrological and vegetation change over the last millennium. Quat. Sci. Rev. 2018, 182, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.; Ferrians, O.; Heginbottom, J.A.; Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions; Version 2; National Snow and Ice Data Center: Boulder, CO, USA, 2002. [Google Scholar] [CrossRef]
- Romanenko, F.A.; Garankina, E.V. Permafrost formation and structure at the south border of cryolithozone, the Kola Peninsula. Earth’s Cryosphere 2012, 16, 72–80. [Google Scholar]
- Gisnås, K.; Etzelmüller, B.; Lussana, C.; Hjort, J.; Sannel, A.B.K.; Isaksen, K.; Westermann, S.; Kuhry, P.; Christiansen, H.H.; Frampton, A.; et al. Permafrost map for Norway, Sweden and Finland. Permafr. Periglac. Process. 2016, 28, 359–378. [Google Scholar] [CrossRef] [Green Version]
- Barcan, V.S. Stability of palsa at the southern margin of its distribution on the Kola Peninsula. Polar Sci. 2010, 4, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Marshall, G.J.; Vignols, R.M.; Rees, W.G. Climate Change in the Kola Peninsula, Arctic Russia, during the Last 50 Years from Meteorological Observations. J. Clim. 2016, 29, 6823–6840. [Google Scholar] [CrossRef]
- Koptseva, E.M.; Natsvaladze, N.Y.; Zhuravleva, E.N. Transformation of palsa mires vegetation on Kola Peninsula under climatic changes. Bot. Zhurnal 2016, 101, 537–547. [Google Scholar]
- Kutenkov, S.A.; Kozhin, M.N.; Golovina, E.O.; Kopeina, E.I.; Stoikina, N.V. Polygonal patterned peatlands of the White Sea islands. IOP Conf. Ser. Earth Environ. Sci. 2018, 138, 012010. [Google Scholar] [CrossRef]
- Palace, M.; Herrick, C.; DelGreco, J.; Finnell, D.; Garnello, A.J.; McCalley, C.; McArthur, K.; Sullivan, F.; Varner, R.K. Determining Subarctic Peatland Vegetation Using an Unmanned Aerial System (UAS). Remote Sens. 2018, 10, 1498. [Google Scholar] [CrossRef] [Green Version]
- de la Barreda-Bautista, B.; Boyd, D.S.; Ledger, M.; Siewert, M.B.; Chandler, C.; Bradley, A.V.; Gee, D.; Large, D.J.; Olofsson, J.; Sowter, A.; et al. Towards a Monitoring Approach for Understanding Permafrost Degradation and Linked Subsidence in Arctic Peatlands. Remote Sens. 2022, 14, 444. [Google Scholar] [CrossRef]
- He, C.; Zhang, J.; Liu, Z.; Huang, Q. Characteristics and Progress of Land Use/Cover Change Research during 1990–2018. J. Geogr. Sci. 2022, 32, 537–559. [Google Scholar] [CrossRef]
- Räsänen, A.; Aurela, M.; Juutinen, S.; Kumpula, T.; Lohila, A.; Penttilä, T.; Virtanen, T. Detecting northern peatland vegetation patterns at ultra-high spatial resolution. Remote Sens. Ecol. Conserv. 2020, 6, 457–471. [Google Scholar] [CrossRef] [Green Version]
- Räsänen, A.; Virtanen, T. Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes. Remote Sens. Environ. 2019, 230, 111207. [Google Scholar] [CrossRef]
- Siewert, M.B.; Olofsson, J. Scale-dependency of Arctic ecosystem properties revealed by UAV. Environ. Res. Lett. 2020, 15, 094030. [Google Scholar] [CrossRef]
- Thomson, E.R.; Spiegel, M.P.; Althuizen, I.H.J.; Bass, P.; Chen, S.; Chmurzynski, A.; Halbritter, A.H.; Henn, J.J.; Jónsdóttir, I.S.; Klanderud, K.; et al. Multiscale Mapping of Plant Functional Groups and Plant Traits in the High Arctic Using Field Spectroscopy, UAV Imagery and Sentinel-2A Data. Environ. Res. Lett. 2021, 16, 055006. [Google Scholar] [CrossRef]
- Cunnick, H.; Ramage, J.M.; Magness, D.; Peters, S.C. Mapping Fractional Vegetation Coverage across Wetland Classes of Sub-Arctic Peatlands Using Combined Partial Least Squares Regression and Multiple Endmember Spectral Unmixing. Remote Sens. 2023, 15, 1440. [Google Scholar] [CrossRef]
- Hugelius, G.; Virtanen, T.; Kaverin, D.; Pastukhov, A.; Rivkin, F.; Marchenko, S.; Romanovsky, V.; Kuhry, P. High-resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain, European Russian Arctic. J. Geophys. Res. Biogeosci. 2011, 116, G03024. [Google Scholar] [CrossRef]
- Siewert, M.B.; Hanisch, J.; Weiss, N.; Kuhry, P.; Maximov, T.C.; Hugelius, G. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution: Ecosystem carbon in taiga and tundra. J. Geophys. Res. Biogeosci. 2015, 120, 1973–1994. [Google Scholar] [CrossRef] [Green Version]
- Siewert, M.B. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: A case study in a sub-Arctic peatland environment. Biogeosciences 2018, 15, 1663–1682. [Google Scholar] [CrossRef] [Green Version]
- Sjogersten, S.; Ledger, M.; Siewert, M.; de la Barreda-Bautista, B.; Sowter, A.; Gee, D.; Foody, G.; Boyd, D.S. Capabilities of optical and radar Earth observation data for up-scaling methane emissions linked to subsidence and permafrost degradation in sub-Arctic peatlands. Biogeosci. Discuss. 2023. preprint. [Google Scholar] [CrossRef]
- Douglas, T.A.; Jorgenson, M.T.; Brown, D.R.; Campbell, S.W.; Hiemstra, C.A.; Saari, S.P.; Bjella, K.; Liljedahl, A.K. Degrading permafrost mapped with electrical resistivity tomography, airborne imagery and LiDAR, and seasonal thaw measurements. Geophysics 2016, 81, WA71–WA85. [Google Scholar] [CrossRef]
- Douglas, T.A.; Hiemstra, C.A.; Anderson, J.E.; Barbato, R.A.; Bjella, K.L.; Deeb, E.J.; Gelvin, A.B.; Nelsen, P.E.; Newman, S.D.; Saari, S.P.; et al. Recent degradation of Interior Alaska permafrost mapped with ground surveys, geophysics, deep drilling, and repeat airborne LiDAR. Cryosphere 2021, 15, 3555–3575. [Google Scholar] [CrossRef]
- Sjöberg, Y.; Marklund, P.; Pettersson, R.; Lyon, S.W. Geophysical mapping of palsa peatland permafrost. Cryosphere 2015, 9, 465–478. [Google Scholar] [CrossRef] [Green Version]
- Emmert, A.; Kneisel, C. Internal structure and palsa development at Orravatnsrústir Palsa Site (Central Iceland), investigated by means of integrated resistivity and ground-penetrating radar methods. Permafr. Periglac. Process. 2021, 32, 503–519. [Google Scholar] [CrossRef]
- Martin, L.C.P.; Nitzbon, J.; Aas, K.S.; Etzelmüller, B.; Kristiansen, H.; Westermann, S. Stability conditions of peat plateaus and palsas in northern Norway. J. Geophys. Res. Earth Surf. 2019, 124, 705–719. [Google Scholar] [CrossRef]
- Elina, G.A.; Lukashov, A.D.; Yurkovskaya, T.K. Late Glacial and Holocene Palaeovegetation and Palaeogeography of Eastern Fennoscandia; The Finnish Environmental Institute: Helsinki, Finland, 2010; ISBN 978-952-11-3715-0. [Google Scholar]
- Batuev, V.I.; Kalyuzhny, I.L. Hydrological regime and freezing of hummocky bogs on the European North of Russia. Eng. Surv. 2018, 12, 38–48. [Google Scholar] [CrossRef]
- Danielson, J.J.; Gesch, D.B. Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Open-File Report 2011–1073. U.S. Department of the Interior; U.S. Geological Survey. Available online: https://pubs.usgs.gov/of/2011/1073/pdf/of2011-1073.pdf (accessed on 25 January 2023).
- Ecke, S.; Dempewolf, J.; Frey, J.; Schwaller, A.; Endres, E.; Klemmt, H.-J.; Tiede, D.; Seifert, T. UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sens. 2022, 14, 3205. [Google Scholar] [CrossRef]
- Müllerová, J.; Gago, X.; Bučas, M.; Company, J.; Estrany, J.; Fortesa, J.; Manfreda, S.; Michez, A.; Mokroš, M.; Paulus, G.; et al. Characterizing Vegetation Complexity with Unmanned Aerial Systems (UASs)—A Framework and Synthesis. Ecological Indicators 2021, 131, 108156. [Google Scholar] [CrossRef]
- Wolff, F.; Kolari, T.H.; Villoslada, M.; Tahvanainen, T.; Korpelainen, P.; Zamboni, P.A.; Kumpula, T. RGB vs. Multispectral imagery: Mapping aapa mire plant communities with UAVs. Ecol. Indic. 2023, 148, 110140. [Google Scholar] [CrossRef]
- Steenvoorden, J.; Bartholomeus, H.; Limpens, J. Less is more: Optimizing vegetation mapping in peatlands using unmanned aerial vehicles (UAVs). Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103220. [Google Scholar] [CrossRef]
- Verdonen, M.; Tarolli, P.; Korpelainen, P.; Kolari, T.; Tahvanainen, T.; Kumpula, T. Application of UAS in the analysis of the spatial distribution of active layer thickness in Palsa mounds. Geophys. Res. Abstr. 2019, 21, 13158. [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J. Structure-from-Motion photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Annan, A.P. Electromagnetic Principles of Ground Penetrating Radar. In Ground Penetrating Radar: Theory and Applications; Jol, H.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1–40. ISBN 978-044-453-348-7. [Google Scholar]
- Arcone, S.A.; Lawson, D.E.; Delaney, A.J.; Strasser, J.C.; Strasser, J.D. Ground-penetrating radar reflection profiling of groundwater and bedrock in an area of discontinuous permafrost. Geophysics 1998, 63, 1573–1584. [Google Scholar] [CrossRef]
- Moorman, B.J.; Robinson, S.D.; Burgess, M.M. Imaging periglacial conditions with ground-penetrating radar. Permafr. Periglac. Process. 2003, 14, 319–329. [Google Scholar] [CrossRef]
- Kneisel, C.; Hauck, C.; Fortier, R.; Moorman, B. Advances in Geophysical Methods for Permafrost Investigations. Permafr. Periglac. Process. 2008, 19, 157–178. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Hardisky, M.A.; Black, S. A ground-penetrating radar study of Goodream palsas, Newfoundland, Canada. Arct. Alp. Res. 1992, 24, 173–178. [Google Scholar] [CrossRef]
- Horvath, C.L. An evaluation of ground penetrating radar for investigation of palsa evolution, Macmillan Pass, NWT, Canada. In Permafrost: Seventh International Conference Proceedings, Yellowknife, NT, Canada, 23–27 June 1998; Lewkowicz, A.G., Allard, M., Eds.; Centre d’études Nordiques, Universite Laval: Québec, QC, Canada; pp. 473–478.
- Kohout, T.; Bućko, M.S.; Rasmus, K.; Leppäranta, M.; Matero, I. Non-Invasive Geophysical Investigation and Thermodynamic Analysis of a Palsa in Lapland, Northwest Finland. Permafr. Periglac. Process. 2014, 25, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, S.; Akyurek, Z.; Binley, A. Quantifying snow water equivalent using terrestrial ground penetrating radar and unmanned aerial vehicle photogrammetry. Hydrol. Process. 2021, 35, e14190. [Google Scholar] [CrossRef]
- Pal, M. Random Forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Kotsiantis, S.B. Supervised Machine Learning: A Review of Classification Techniques. Informatica 2007, 31, 249–268. [Google Scholar]
- Cracknell, M.J.; Reading, A.M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Webb, G.I.; Liu, L.; Ma, X. A novel selective naïve Bayes algorithm. Knowl.-Based Syst. 2020, 192, 105361. [Google Scholar] [CrossRef]
- Nayak, J.; Naik, B.; Behera, H.S. A Comprehensive Survey on Support Vector Machine in Data Mining Tasks: Applications & Challenges. Int. J. Database Theory Appl. 2015, 8, 169–186. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.F.J.; O’Connell, B.; Brown, C.; Guinan, J.C.; Grehan, A.J. Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope. Mar. Geod. 2007, 30, 3–35. [Google Scholar] [CrossRef] [Green Version]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Weiss, A.D. Topographic Position and Landforms Analysis. In Proceedings of the Poster Presentation, ESRI User Conference, San Diego, CA, USA, 9–13 July 2001. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.M.; Baughman, C.A.; Romanovsky, V.E.; Parsekian, A.D.; Babcock, E.L.; Stephani, E.; Jones, M.C.; Grosse, G.; Berg, E.E. Presence of rapidly degrading permafrost plateaus in south-central Alaska. Cryosphere 2016, 10, 2673–2692. [Google Scholar] [CrossRef] [Green Version]
- Zuidhoff, F.S.; Kolstrup, E. Palsa development and associated vegetation in northern Sweden. Arct. Antarct. Alp. Res. 2005, 37, 49–60. [Google Scholar] [CrossRef]
- Noviello, C.; Gennarelli, G.; Esposito, G.; Ludeno, G.; Fasano, G.; Capozzoli, L.; Soldovieri, F.; Catapano, I. An Overview on Down-Looking UAV-Based GPR Systems. Remote Sens. 2022, 14, 3245. [Google Scholar] [CrossRef]
- Marshall, C.; Sterk, H.P.; Gilbert, P.J.; Andersen, R.; Bradley, A.V.; Sowter, A.; Marsh, S.; Large, D.J. Multiscale Variability and the Comparison of Ground and Satellite Radar Based Measures of Peatland Surface Motion for Peatland Monitoring. Remote Sens. 2022, 14, 336. [Google Scholar] [CrossRef]
- Bradley, A.V.; Andersen, R.; Marshall, C.; Sowter, A.; Large, D.J. Identification of typical ecohydrological behaviours using InSAR allows landscape-scale mapping of peatland condition. Earth Surf. Dyn. 2022, 10, 261–277. [Google Scholar] [CrossRef]
- Minasny, B.; Berglund, Ö.; Connolly, J.; Hedley, C.; de Vries, F.; Gimona, A.; Kempen, B.; Kidd, D.; Lilja, H.; Malone, B.; et al. Digital Mapping of Peatlands—A Critical Review. Earth-Sci. Rev. 2019, 196, 102870. [Google Scholar] [CrossRef]
- Martin, L.C.P.; Nitzbon, J.; Scheer, J.; Aas, K.S.; Eiken, T.; Langer, M.; Filhol, S.; Etzelmüller, B.; Westermann, S. Lateral thermokarst patterns in permafrost peat plateaus in northern Norway. Cryosphere 2021, 15, 3423–3442. [Google Scholar] [CrossRef]
- Verdonen, M.; Störmer, A.; Korpelainen, P.; Lotsari, E.; Burkhard, B.; Colpaert, A.; Kumpula, T. Permafrost degradation at two monitored palsa mires in north-west Finland. EGUsphere 2022. preprint. [Google Scholar] [CrossRef]
Orthophoto | DEM | |
---|---|---|
Spatial resolution, cm/px | 1.96 | 3.92 |
Number of channels | 3 (RGB) | 1 |
Land Cover Class | Herb and Subshrub Layer | Mean Cover (%) | Moss and Lichen Layer | Mean Cover (%) |
---|---|---|---|---|
lichen hummock vegetation (LH) | Empetrum hermaphroditum Hagerup, Rubus chamaemorus L., Vaccinium vitis-idaea L. | 20 | Cladonia ssp., Flavocetraria nivalis (L.) Kärnefelt et A. Thell | 90 |
carpet vegetation (C) | Eriophorum vaginatum L., Carex limosa L., C. rotundata Wahlenb. | 20 | Sphagnum balticum (Russow) C.E.O. Jensen, Sphagnum lindbergii Schimp. | 90 |
tall graminoid vegetation (TG) | Eriophorum russeolum Fr., Eriophorum angustifolium Honck. | 45 | Sphagnum riparium Ångstr. | 80 |
moist hummock vegetation (MH) | Rubus chamaemorus L., Empetrum hermaphroditum Hagerup, Andromeda polifolia L., Eriophorum vaginatum L. | 40 | Sphagnum fuscum (Schimp.) H. Klinggr., Sphagnum capillifolium (Ehrh.) Hedw. | 95 |
tall shrub vegetation (TSh) | Betula nana L., Ledum palustre L. | 70 | Pleurozium schreberi (Willd. ex Brid.) Mitt., Sphagnum fuscum (Schimp.) H. Klinggr. | 40 |
Classification Algorithms | Overall Accuracy, % | Producer Accuracy | |||||
---|---|---|---|---|---|---|---|
LH | C | TG | MH | TSh | W | ||
NB | 86.4 | 80.9 | 87.5 | 89.1 | 89.3 | 84.4 | 91.7 |
RF | 78.7 | 83.4 | 89.4 | 81.3 | 82.8 | 72.1 | 67.6 |
SVM | 82.5 | 70.7 | 86.5 | 77.9 | 84.8 | 84 | 89.8 |
Cover Type | Covered Area, % | ||
---|---|---|---|
NB | RF | SVM | |
lichen hummock vegetation (LH) | 11 | 14 | 10 |
carpet vegetation (C) | 13 | 13 | 14 |
tall graminoid vegetation (TG) | 15 | 20 | 11 |
moist hummock vegetation (MH) | 24 | 21 | 25 |
tall shrub vegetation (TSh) | 33 | 30 | 37 |
open water(W) | 3 | 3 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krutskikh, N.; Ryazantsev, P.; Ignashov, P.; Kabonen, A. The Spatial Analysis of Vegetation Cover and Permafrost Degradation for a Subarctic Palsa Mire Based on UAS Photogrammetry and GPR Data in the Kola Peninsula. Remote Sens. 2023, 15, 1896. https://doi.org/10.3390/rs15071896
Krutskikh N, Ryazantsev P, Ignashov P, Kabonen A. The Spatial Analysis of Vegetation Cover and Permafrost Degradation for a Subarctic Palsa Mire Based on UAS Photogrammetry and GPR Data in the Kola Peninsula. Remote Sensing. 2023; 15(7):1896. https://doi.org/10.3390/rs15071896
Chicago/Turabian StyleKrutskikh, Natalya, Pavel Ryazantsev, Pavel Ignashov, and Alexey Kabonen. 2023. "The Spatial Analysis of Vegetation Cover and Permafrost Degradation for a Subarctic Palsa Mire Based on UAS Photogrammetry and GPR Data in the Kola Peninsula" Remote Sensing 15, no. 7: 1896. https://doi.org/10.3390/rs15071896