Vegetation Cover Variation in Dry Valleys of Southwest China: The Role of Precipitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Dry Valleys
2.2. Calculation of FVC
2.3. Evaluation of Effects of Main Influencing Factors on FVC Dynamics
3. Results
3.1. Average Annual FVC in Dry Valleys from 2000 to 2020
3.2. The Dynamics of Vegetation Cover in Dry Valleys
3.3. Effects of Precipitation on the Dynamics of Vegetation Cover
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Curtis, L. Remote sensing systems for monitoring crops and vegetation. Prog. Phys. Geogr. 1978, 2, 55–79. [Google Scholar] [CrossRef]
- Fu, B. Soil erosion and its control in the Loess Plateau of China. Soil Use Manag. 1989, 5, 76–82. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.J.; Piao, S.L.; Lü, Y.H.; Ciais, P.; Feng, X.M.; Wang, Y.F. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Ouyang, Z.; Tam, C.; Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl. Acad. Sci. USA 2008, 105, 9477–9482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Lü, Y.; Zhang, L.; Feng, X.; Zeng, Y.; Fu, B.; Yao, X.; Li, J.; Wu, B. Recent ecological transitions in China: Greening, browning and influential factors. Sci. Rep. 2015, 5, 8732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef]
- Wang, H.; Chen, A.; Wang, Q.; He, B. Drought dynamics and impacts on vegetation in China from 1982 to 2011. Ecol. Eng. 2015, 75, 303–307. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, J.; Li, P.; Li, Z.; Lu, K.; Wang, X.; Wang, F.; Cheng, Y.; Wang, B. Vegetation restoration projects and their influence on runoff and sediment in China. Ecol. Indic. 2018, 95, 233–241. [Google Scholar] [CrossRef]
- Yu, L.; Liu, Y.; Liu, T.; Yan, F. Impact of recent vegetation greening on temperature and precipitation over China. Agric. For. Meteorol. 2020, 295, 108197. [Google Scholar] [CrossRef]
- Yu, L.; Xue, Y.; Diallo, I. Vegetation greening in China and its effect on summer regional climate. Sci. Bull. 2021, 66, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, K.; Lin, Y.; Shi, W.; Song, Y.; He, X. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1029. [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Liu, Y.; Liu, J.; Liang, W.; Miao, C. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Kou, P.; Xu, Q.; Jin, Z.; Yunus, A.P.; Luo, X.; Liu, M. Complex anthropogenic interaction on vegetation greening in the Chinese Loess Plateau. Sci. Total. Environ. 2021, 778, 146065. [Google Scholar] [CrossRef]
- Du, J.; Shu, J.; Yin, J.; Yuan, X.; Jiaerheng, A.; Xiong, S.; He, P.; Liu, W. Analysis on spatio-temporal trends and drivers in vegetation growth during recent decades in Xinjiang, China. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 216–228. [Google Scholar] [CrossRef]
- Fang, S.; Yan, J.; Che, M.; Zhu, Y.; Liu, Z.; Pei, H.; Zhang, H.; Xu, G.; Lin, X. Climate change and the ecological responses in Xinjiang, China: Model simulations and data analyses. Quat. Int. 2013, 311, 108–116. [Google Scholar] [CrossRef]
- Liang, S.; Yi, Q.; Liu, J. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar] [CrossRef]
- Shao, S.S.; Shi, Q.D. Spatial and temporal change of vegetation cover in Xinjiang based on FVC. Sci. Silvae Sin. 2015, 51, 35–42, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, Z.Y.; Zhang, J.; Chen, L. The latest change in the Qinghai-Tibetan Plateau vegetation index and its relationship with climate factors. Clim. Environ. Res. 2017, 22, 289–300, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Peng, L.; Deng, W.; Liu, Y. Understanding the Role of Urbanization on Vegetation Dynamics in Mountainous Areas of Southwest China: Mechanism, Spatiotemporal Pattern, and Policy Implications. ISPRS Int. J. Geo-Int. 2021, 10, 590. [Google Scholar] [CrossRef]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total. Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhang, W.; Wang, S.; Zhang, B.; Xu, Q. Spatial–Temporal Vegetation Dynamics and Their Relationships with Climatic, Anthropogenic, and Hydrological Factors in the Amur River Basin. Remote Sens. 2021, 13, 684. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, X.; Smettem, K.; Wang, T. Climate and land use influences on changing spatiotemporal patterns of mountain vegetation cover in southwest China. Ecol. Indic. 2021, 121, 107193. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Chen, A.; Gao, M.; Slette, I.J.; Piao, S. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agric. For. Meteorol. 2019, 269, 239–248. [Google Scholar] [CrossRef]
- Tao, J.; Xu, T.; Dong, J.; Yu, X.; Jiang, Y.; Zhang, Y.; Huang, K.; Zhu, J.; Dong, J.; Xu, Y.; et al. Elevation-dependent effects of climate change on vegetation greenness in the high mountains of southwest China during 1982–2013. Int. J. Clim. 2018, 38, 2029–2038. [Google Scholar] [CrossRef]
- Zheng, Z.J.; Zeng, Y.; Zhao, Y.J.; Zhao, D.; Wu, B.F. Monitoring and dynamic analysis of fractional vegetation cover in southwestern China over the past 15 years based on MODIS data. Remote Sens. Land Resour. 2017, 29, 128–136, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yin, L.; Dai, E.; Zheng, D.; Wang, Y.; Ma, L.; Tong, M. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity? Ecol. Indic. 2020, 112, 106013. [Google Scholar] [CrossRef]
- Li, J.; Peng, S.; Li, Z. Detecting and attributing vegetation changes on China’s Loess Plateau. Agric. For. Meteorol. 2017, 247, 260–270. [Google Scholar] [CrossRef]
- Ma, H.-Y.; Zhang, L.-L.; Wei, X.-Q.; Shi, T.-T.; Chen, T.-X. Spatial and temporal variations of land use and vegetation cover in Southwest China from 2000 to 2015. Chin. J. Appl. Ecol. 2021, 32, 618–628, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wu, D.; Wu, H.; Zhao, X.; Zhou, T.; Tang, B.; Zhao, W.; Jia, K. Evaluation of Spatiotemporal Variations of Global Fractional Vegetation Cover Based on GIMMS NDVI Data from 1982 to 2011. Remote Sens. 2014, 6, 4217–4239. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Xiong, D.; Su, Z.; Li, J.; Yang, D.; Shi, L.; Liu, G. The distribution of and factors influencing the vegetation in a gully in the Dry-hot Valley of southwest China. Catena 2014, 116, 60–67. [Google Scholar] [CrossRef]
- Duan, X.; Liu, B.; Gu, Z.; Rong, L.; Feng, D. Quantifying soil erosion effects on soil productivity in the dry-hot valley, southwestern China. Environ. Earth Sci. 2016, 75, 1164. [Google Scholar] [CrossRef]
- Su, Z.; Xiong, D.; Dong, Y.; Li, J.; Yang, D.; Zhang, J.; He, G. Simulated headward erosion of bank gullies in the Dry-hot Valley Region of southwest China. Geomorphology 2014, 204, 532–541. [Google Scholar] [CrossRef]
- Cai, D.; Ge, Q.; Wang, X.; Liu, B.; Goudie, A.S.; Hu, S. Contributions of ecological programs to vegetation restoration in arid and semiarid China. Environ. Res. Lett. 2020, 15, 114046. [Google Scholar] [CrossRef]
- Shao, R.; Zhang, B.; Su, T.; Long, B.; Cheng, L.; Xue, Y.; Yang, W. Estimating the Increase in Regional Evaporative Water Consumption as a Result of Vegetation Restoration Over the Loess Plateau, China. J. Geophys. Res. Atmos. 2019, 124, 11783–11802. [Google Scholar] [CrossRef]
- Zhang, R.Z. The Dry Valley of the Hengduan Mountains Regions; Science Press: Beijing, China, 1992. (In Chinese) [Google Scholar]
- Li, G.; Sun, S.B.; Han, J.C.; Yan, J.W.; Liu, W.B.; Wei, Y.; Lu, N.; Sun, Y.Y. Impacts of Chinese Grain for Green program and climate change on vegetation in the Loess Plateau during 1982–2015. Sci. Total Environ. 2019, 660, 177–187. [Google Scholar] [CrossRef]
- Jiang, X.W.; Li, Y.Q. Spatio-temporal variability of winter temperature and precipitation in Southwest China. J. Geogr. Sci. 2011, 21, 250–262. [Google Scholar] [CrossRef]
- Zhen-Feng, M.; Jia, L.; Shun-Qian, Z.; Wen-Xiu, C.; Shu-Qun, Y. Observed Climate Changes in Southwest China during 1961–2010. Adv. Clim. Chang. Res. 2013, 4, 30–40. [Google Scholar] [CrossRef]
- Qin, N.; Chen, X.; Fu, G.; Zhai, J.; Xue, X. Precipitation and temperature trends for the Southwest China: 1960–2007. Hydrol. Process. 2010, 24, 3733–3744. [Google Scholar] [CrossRef]
- Shi, P.; Wu, M.; Qu, S.; Jiang, P.; Qiao, X.; Chen, X.; Zhou, M.; Zhang, Z. Spatial Distribution and Temporal Trends in Precipitation Concentration Indices for the Southwest China. Water Resour. Manag. 2015, 29, 3941–3955. [Google Scholar] [CrossRef]
- Wang, S.; Jiao, S.; Xin, H. Spatio-temporal characteristics of temperature and precipitation in Sichuan Province, Southwestern China. Quat. Int. 2013, 286, 103–115. [Google Scholar] [CrossRef]
- Yu, H.; Wang, L.; Yang, R.; Yang, M.; Gao, R. Temporal and spatial variation of precipitation in the Hengduan Mountains region in China and its relationship with elevation and latitude. Atmospheric Res. 2018, 213, 1–16. [Google Scholar] [CrossRef]
- Zhang, K.; Pan, S.; Cao, L.; Wang, Y.; Zhao, Y.; Zhang, W. Spatial distribution and temporal trends in precipitation extremes over the Hengduan Mountains region, China, from 1961 to 2012. Quat. Int. 2014, 349, 346–356. [Google Scholar] [CrossRef]
- Fu, B.; Wang, Y.; Xu, P.; Yan, K.; Li, M. Value of ecosystem hydropower service and its impact on the payment for ecosystem services. Sci. Total. Environ. 2014, 472, 338–346. [Google Scholar] [CrossRef]
- Chen, J.; Mei, Y.; Ben, Y.; Hu, T. Emergy-based sustainability evaluation of two hydropower projects on the Tibetan Plateau. Ecol. Eng. 2020, 150, 105838. [Google Scholar] [CrossRef]
- Yang, J.; El-Kassaby, Y.; Guan, W. Multiple Ecological Drivers Determining Vegetation Attributes across Scales in a Mountainous Dry Valley, Southwest China. Forests 2020, 11, 1140. [Google Scholar] [CrossRef]
- Tu, C.; He, T.; Lu, X.; Luo, Y.; Smith, P. Extent to which pH and topographic factors control soil organic carbon level in dry farming cropland soils of the mountainous region of Southwest China. Catena 2018, 163, 204–209. [Google Scholar] [CrossRef]
- Fan, J.R.; Yang, C.; Bao, W.K.; Liu, J.L.; Li, X. Distribution scope and district statistical analysis of dry valleys in Southwest China. Mt. Res. 2020, 38, 303–313, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, P.; Cai, Y.; Yang, W.; Yi, Y.; Yang, Z.; Fu, Q. Contributions of climatic and anthropogenic drivers to vegetation dynamics indicated by NDVI in a large dam-reservoir-river system. J. Clean. Prod. 2020, 256, 120477. [Google Scholar] [CrossRef]
- Gao, P.; Mu, X.-M.; Wang, F.; Li, R. Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrol. Earth Syst. Sci. 2011, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.; Miao, C.; Borthwick, A.G.L.; Lei, X.; Li, H. Spatiotemporal variations in vegetation cover on the Loess Plateau, China, between 1982 and 2013: Possible causes and potential impacts. Environ. Sci. Pollut. Res. 2018, 25, 13633–13644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, A.; Zhang, A.; Lu, C.; Wang, D.; Wang, H.; Liu, H. Spatiotemporal variation of vegetation coverage before and after implementation of Grain for Green Program in Loess Plateau, China. Ecol. Eng. 2017, 104, 12–22. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Jiao, J.; Gao, P.; Sun, W.; Li, E.; Wei, Y.; Huang, J. Assessing response of sediment load variation to climate change and human activities with six different approaches. Sci. Total. Environ. 2018, 639, 773–784. [Google Scholar] [CrossRef] [PubMed]
Index | Dry–Hot | Dry–Warm | Dry–Temperate |
---|---|---|---|
Mean annual precipitation (mm) | 600–1000 | 300–1100 | 400–700 |
Mean temperature in coldest month (°C) | >12 | 12–5 | 5–0 |
Mean temperature in warmest month (°C) | 28–24 | 24–22 | 22–16 |
No. of days with daily mean temperature higher than 10 °C | >350 | 350–251 | 250–151 |
Vegetation Type | Savanna, mesophyllous shrub | Savanna, small-leaf deciduous shrub | Small leaf with thorns, deciduous shrub |
Soil Type | Xerothermic | Laterite | Cinnamon |
Agriculture | Triple-cropping | Double-cropping | Double-cropping |
No. | Climate | 1st River | 2nd River | 3rd River | Area(km2) | AAP (mm) | STDP (mm) | AAT (°C) | STDT (°C) | AE (m) | STDE (m) | AS (°) | STDS (°) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Hot | Yuan | MS | - | 2910 | 1073.18 | 127.48 | 21.70 | 1.52 | 841.97 | 319.74 | 23.05 | 11.30 |
2 | Hot | Yuan | Luzhi | - | 765 | 963.34 | 125.72 | 20.65 | 1.47 | 1180.03 | 279.02 | 23.70 | 10.48 |
3 | Warm | Yuan | MS | - | 194 | 970.61 | 167.21 | 19.23 | 0.60 | 1546.05 | 173.08 | 24.20 | 10.75 |
4 | Hot | Lancang | MS | - | 220 | 1032.99 | 159.56 | 20.31 | 0.67 | 1335.76 | 196.18 | 26.63 | 12.62 |
5 | Warm | Lancang | MS | - | 754 | 1023.08 | 141.27 | 15.07 | 1.69 | 2030.56 | 370.02 | 29.47 | 12.02 |
6 | Temperate | Lancang | MS | - | 516 | 789.88 | 125.24 | 10.85 | 1.72 | 2618.32 | 375.21 | 33.32 | 11.52 |
7 | Hot | Nu | MS | - | 1650 | 1117.13 | 161.53 | 21.12 | 1.24 | 1015.59 | 272.73 | 21.96 | 12.79 |
8 | Temperate | Nu | MS | - | 537 | 774.42 | 130.85 | 11.16 | 2.22 | 2545.07 | 441.26 | 36.93 | 13.13 |
9 | Hot | Yangtze | MS | - | 11,279 | 898.52 | 111.20 | 18.70 | 2.11 | 1425.51 | 361.61 | 22.07 | 13.10 |
10 | Warm | Yangtze | MS | - | 1730 | 874.81 | 93.17 | 14.51 | 2.18 | 2111.39 | 416.25 | 29.93 | 13.11 |
11 | Temperate | Yangtze | MS | - | 3164 | 704.92 | 94.29 | 8.97 | 1.97 | 2976.21 | 390.29 | 31.23 | 12.19 |
12 | Temperate | Yangtze | Shuiluo | - | 877 | 794.57 | 81.00 | 10.65 | 2.08 | 2740.03 | 419.82 | 31.83 | 12.17 |
13 | Warm | Yangtze | Min | MS | 39 | 942.06 | 129.98 | 13.05 | 1.11 | 1582.34 | 318.10 | 34.18 | 13.51 |
14 | Temperate | Yangtze | Min | MS | 1869 | 849.53 | 115.33 | 9.56 | 2.20 | 2384.37 | 464.39 | 32.88 | 12.63 |
15 | Warm | Yangtze | Min | Dadu | 224 | 1010.85 | 71.30 | 14.10 | 1.33 | 1753.41 | 370.27 | 31.15 | 14.15 |
16 | Temperate | Yangtze | Min | Dadu | 1707 | 823.86 | 95.72 | 10.42 | 1.90 | 2624.84 | 394.42 | 33.24 | 13.08 |
17 | Warm | Yangtze | Yalong | MS | 1674 | 892.48 | 91.11 | 14.36 | 2.22 | 1546.05 | 434.63 | 29.16 | 12.21 |
18 | Temperate | Yangtze | Yalong | MS | 1580 | 838.91 | 70.05 | 10.76 | 1.72 | 2647.48 | 405.33 | 34.49 | 13.20 |
19 | Warm | Yangtze | Yalong | Anning | 1062 | 959.51 | 107.08 | 16.07 | 1.36 | 1617.48 | 155.56 | 10.21 | 8.56 |
20 | Temperate | Yangtze | Jialing | Baishui | 693 | 660.02 | 104.63 | 8.85 | 2.04 | 2074.02 | 447.98 | 31.58 | 12.60 |
Land Use | Area (km2) | Proportion (%) | ||||
---|---|---|---|---|---|---|
Hot | Warm | Temperate | Hot | Warm | Temperate | |
Arable land | 3524.83 | 1161.61 | 631.05 | 21.00 | 20.47 | 6.08 |
Orchard | 1222.57 | 75.64 | 240.11 | 7.28 | 1.33 | 2.31 |
Forest | 7953.73 | 3177.80 | 7251.52 | 47.38 | 55.99 | 69.91 |
Grassland | 2496.14 | 655.95 | 1799.79 | 14.87 | 11.56 | 17.35 |
Construction sites | 842.25 | 300.06 | 227.72 | 5.02 | 5.29 | 2.19 |
Water bodies | 747.12 | 304.15 | 224.52 | 4.45 | 5.36 | 2.16 |
All | 16,786.64 | 5675.21 | 10,374.71 | 100.00 | 100.00 | 100.00 |
No. | River—Climate | FVC | Grade | No. | River—Climate | FVC | Grade |
---|---|---|---|---|---|---|---|
1 | Yuan—Hot | 0.429 | medium | 11 | Jinsha—Temperate | 0.297 | low |
2 | Yuan—Warm | 0.461 | medium | 12 | Shuiluo—Temperate | 0.560 | high |
3 | Lvzhi—Hot | 0.366 | medium | 13 | Min—Warm | 0.508 | high |
4 | Lancang—Hot | 0.455 | medium | 14 | Min—Temperate | 0.500 | high |
5 | Lancang—Warm | 0.498 | high | 15 | Dadu—Warm | 0.520 | high |
6 | Lancang—Temperate | 0.291 | low | 16 | Dadu—Temperate | 0.546 | high |
7 | Nu—Hot | 0.551 | high | 17 | Yalong—Warm | 0.556 | high |
8 | Nu—Temperate | 0.320 | low | 18 | Yalong—Temperate | 0.574 | high |
9 | Jinsha—Hot | 0.429 | medium | 19 | Anning—Warm | 0.449 | medium |
10 | Jinsha—Warm | 0.495 | high | 20 | Baishui—Temperate | 0.513 | high |
No. | River—Climate | Temporal Trends of FVC | Relationship between Precipitation and FVC | ||
---|---|---|---|---|---|
Slope (×10−4) | Intercept | Slope (×10−4) | Intercept | ||
/ | Dry | −3.5 * | 1.15 * | 18.2 | 0.44 |
/ | Dry–Hot | −9.1 * | 2.26 * | 65.2 * | 0.64 * |
/ | Dry–Warm | −5.0 | 1.50 | −39.5 | 0.54 |
/ | Dry–Temperate | 4.8 | −0.53 | 86.1 | 0.38 |
1 | Yuan—Hot | −22.4 * | 4.92 * | 1.1 * | 0.31 * |
2 | Luzhi—Hot | −44.2 * | 9.26 * | 1.7 * | 0.20 * |
3 | Yuan—Warm | −32.3 * | 6.94 * | 1.3 * | 0.33 * |
4 | Lancang—Hot | −55.3 * | 11.57 * | 1.7 * | 0.28 * |
5 | Lancang—Warm | 24.6 * | 4.45 * | 13.2 | 0.51 |
6 | Lancang—Temperate | −12.6 | 2.83 | 76.2 * | 0.23 * |
7 | Nu—Hot | −1.3 | 0.81 | 39.6 | 0.51 |
8 | Nu—Temperate | −3.81 | 6.71 | 96.0 | 0.25 |
9 | Jinsha—Hot | −2.1 | 0.85 | 54.2 * | 0.38 * |
10 | Jinsha—Warm | −15.9 * | 3.70 * | −14.8 | 0.51 |
11 | Jinsha—Temperate | −1.7 | 0.64 | 54.1 | 0.26 |
12 | Shuiluo—Temperate | −27.7 * | 6.14 * | −49.9 | 0.60 |
13 | Min—Warm | −20.3 | 4.58 | 322.1 | 0.51 |
14 | Min—Temperate | 35.1 * | −6.55 * | 1.6 * | 0.36 * |
15 | Dadu—Warm | −12.8 | 3.10 | −873.2 | 0.53 |
16 | Dadu—Temperate | 13.8 | −2.23 | 1.5 * | 0.43 * |
17 | Yalong—Warm | 7.5 | −0.96 | −46.3 | 0.60 |
18 | Yalong—Temperate | −8.2 | 2.21 | −30.9 | 0.60 |
19 | Anning—Warm | −20.3 * | 4.53 * | −74.5 | 0.52 |
20 | Baishui—Temperate | 42.3 * | −7.99 * | 2.1 * | 0.37 * |
No. | River—Climate | Project | Construction Period | No. | River—Climate | Project | Construction Period |
---|---|---|---|---|---|---|---|
1 | Yuan—Hot | Dawan | 2012–2015 | 14 | Min—Temperate | Tianlonghu | 2001–2004 |
Madushan | 2007–2011 | Jinlongtan | 2003–2006 | ||||
4 | Lancang—Hot | Xiaowan | 2002–2012 | Jiyu | 2003–2007 | ||
10 | Jinsha—Warm | Liyuan | 2008–2016 | Jiangsheba | 1998–2005 | ||
Ahai | 2008–2014 | Futang | 2001–2004 | ||||
Jin’anqiao | 2003–2011 | Maoergai | 2009–2013 | ||||
Longkaikou | 2007–2014 | Seergu | 2009–2013 | ||||
5 | Lancang—Warm | Wunonglong | 2015–2019 | Liuping | 2004–2009 | ||
Lidi | 2014–2019 | Baixi | 2004–2008 | ||||
Huangdeng | 2008–2018 | Shiziping | 2004–2010 | ||||
Dahuaqiao | 2010–2019 | 20 | Baishui—Temperate | Duonuo | 2009–2012 | ||
Miaowei | 2014–2020 | Yawa | 2014–2017 | ||||
12 | Shuiluo—Temperate | Gudi | 2013–2018 | Lingjiang | 2014–2017 | ||
Xinzang | 2014–2020 | HeiheTang | 2004–2006 | ||||
Bowa | 2015–2020 | Baishuihe | 2014–2018 | ||||
Ninglang | 2008–2012 | Shuanghe | 2008–2009 | ||||
Saduo | 2010–2014 | Qinglong | 2007–2011 | ||||
Shiji | 2009–2014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Zhong, R.; Shan, Z.; Duan, X. Vegetation Cover Variation in Dry Valleys of Southwest China: The Role of Precipitation. Remote Sens. 2023, 15, 1727. https://doi.org/10.3390/rs15071727
Guo Q, Zhong R, Shan Z, Duan X. Vegetation Cover Variation in Dry Valleys of Southwest China: The Role of Precipitation. Remote Sensing. 2023; 15(7):1727. https://doi.org/10.3390/rs15071727
Chicago/Turabian StyleGuo, Qiankun, Ronghua Zhong, Zhijie Shan, and Xingwu Duan. 2023. "Vegetation Cover Variation in Dry Valleys of Southwest China: The Role of Precipitation" Remote Sensing 15, no. 7: 1727. https://doi.org/10.3390/rs15071727
APA StyleGuo, Q., Zhong, R., Shan, Z., & Duan, X. (2023). Vegetation Cover Variation in Dry Valleys of Southwest China: The Role of Precipitation. Remote Sensing, 15(7), 1727. https://doi.org/10.3390/rs15071727