Basal Melt Patterns around the Deep Ice Core Drilling Site in the Dome A Region from Ice-Penetrating Radar Measurements
Abstract
1. Introduction
2. Study Area and Data
3. Methods
3.1. Estimated Bed Returned Power
3.2. Artificial Intelligence Extraction of Ice Thickness
3.3. Classification of Bed Conditions
4. Results
4.1. Various Depth-Averaged Attenuation Rates
4.2. Analysis of the Reflectivity Variation ()
4.3. Wet Bed Condition Map on Bedrock Elevation
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, B.; Moore, J.C.; Zwinger, T.; Zhao, L.; Steinhage, D.; Tang, X.; Zhang, D.; Cui, X.; Martín, C. How old is the ice beneath Dome A, Antarctica? Cryosphere 2014, 8, 1121–1128. [Google Scholar] [CrossRef]
- Zhang, N.; An, C.; Fan, X.; Shi, G.; Li, C.; Liu, J.; Hu, Z.; Talalay, P.; Sun, Y.; Li, Y. Chinese First Deep Ice-Core Drilling Project DK-1 at Dome A, Antarctica (2011–2013): Progress and performance. Ann. Glaciol. 2014, 55, 88–98. [Google Scholar] [CrossRef]
- Hu, Z.; Shi, G.; Talalay, P.; Li, Y.; Fan, X.; An, C.; Zhang, N.; Li, C.; Liu, K.; Yu, J.; et al. Deep ice-core drilling to 800 m at Dome A in East Antarctica. Ann. Glaciol. 2021, 62, 293–304. [Google Scholar] [CrossRef]
- Sun, B.; Siegert, M.J.; Mudd, S.M.; Sugden, D.; Fujita, S.; Cui, X.; Jiang, Y.; Tang, X.; Li, Y. The Gamburtsev mountains and the origin and early evolution of the Antarctic ice sheet. Nature 2009, 459, 690–693. [Google Scholar]
- Hou, S.; Li, Y.; Xiao, C.; Ren, J. Recent accumulation rate at Dome A, Antarctic. Chin. Sci. Bull. 2007, 52, 428–431. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, B.; Wang, Z.; Ding, M.; Hwang, C.; Ai, S.; Wang, L.; Du, Y.; Dongchen, E. GPS-derived velocity and strain fields around Dome Argus, Antarctica. J. Glaciol. 2014, 60, 735–742. [Google Scholar] [CrossRef]
- Jiang, S.; Cole-Dai, J.; Li, Y.; Ferris, D.G.; Ma, H.; An, C.; Shi, G.; Sun, B. A detailed 2840 year record of explosive volcanism in a shallow ice core from Dome A, East Antarctica. J. Glaciol. 2012, 58, 65–75. [Google Scholar] [CrossRef]
- Tang, X.; Sun, B.; Wang, T. Radar isochronic layer dating for a deep ice core at Kunlun Station, Antarctica. Sci. China Earth Sci. 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Tang, X.; Sun, B.; Zhang, Z.; Zhang, X.; Cui, X.; Li, X. Structure of the internal isochronous layers at Dome A, East Antarctica. Sci. China Earth Sci. 2011, 54, 445–450. [Google Scholar] [CrossRef]
- Wolovick, M.J.; Robin, E.B.; Timothy, T.C.; Frearson, N. Identification and control of subglacial water networks under Dome A, Antarctica. J. Geophys. Res. Earth Surf. 2013, 118, 140–154. [Google Scholar] [CrossRef]
- Zhao, L.; Moore, J.C.; Sun, B.; Tang, X.; Guo, X. Where is the 1-million-year-old ice at Dome A? Cryosphere 2018, 12, 1651–1663. [Google Scholar] [CrossRef]
- Bell, R.E.; Ferraccioli, F.; Creyts, T.T.; Braaten, D.; Corr, H.; Das, I.; Damaske, D.; Frearson, N.; Jordan, T.; Rose, K.; et al. Widespread Persistent Thickening of the East Antarctic Ice Sheet by Freezing from the Base. Science 2011, 331, 1592–1595. [Google Scholar] [CrossRef]
- Wrona, T.; Wolovick, M.J.; Ferraccioli, F.; Corr, H.; Jordan, T.A.; Siegert, M. Position and variability of complex structures in the central East Antarctic Ice Sheet. Geol. Soc. Lond. Spec. Publ. 2018, 461, 113. [Google Scholar] [CrossRef]
- Bentley, C.R.; Lord, N.; Liu, C. Radar reflections reveal a wet bed beneath stagnant Ice Stream C and a frozen bed beneath ridge BC, West Antarctica. J. Glaciol. 1998, 44, 149–156. [Google Scholar] [CrossRef]
- Bindschadler, R. Monitoring ice sheet behavior from space. Rev. Geophys. 1998, 36, 79–104. [Google Scholar] [CrossRef]
- Catania, G.A.; Conway, H.B.; Gades, A.M.; Raymond, C.F.; Engelhardt, H. Bed reflectivity beneath inactive ice streams in West Antarctica. Ann. Glaciol. 2003, 36, 287–291. [Google Scholar] [CrossRef]
- Peters, M.E.; Blankenship, D.D.; Morse, D.L. Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams. J. Geophys. Res. 2005, 110, B06303. [Google Scholar] [CrossRef]
- Zirizzotti, A.; Cafarella, L.; Baskaradas, J.A.; Tabacco, I.E.; Urbini, S.; Mangialetti, M.; Bianchi, C. Dry–Wet Bedrock Interface Detection by Radio Echo Sounding Measurements. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2343–2348. [Google Scholar] [CrossRef]
- Lindzey, L.E.; Beem, L.H.; Young, D.A.; Quartini, E.; Blankenship, D.D.; Lee, C.K.; Lee, W.; Lee, J.; Lee, J. Aerogeophysical characterization of an active subglacial lake system in the David Glacier catchment, Antarctica. Cryosphere 2020, 14, 2217–2233. [Google Scholar] [CrossRef]
- Yan, S.; Blankenship, D.D.; Greenbaum, J.; Young, D.; Li, L.; Rutishauser, A.; Guo, J.; Roberts, J.L.; van Ommen, T.D.; Siegert, M.; et al. A newly discovered subglacial lake in East Antarctica likely hosts a valuable sedimentary record of ice and climate change. Geology 2022, 50, 949–953. [Google Scholar] [CrossRef]
- Macgregor, J.A.; Matsuoka, K.; Studinger, M. Radar detection of accreted ice over Lake Vostok, Antarctica. Earth Planet. Sci. Lett. 2009, 282, 222–233. [Google Scholar] [CrossRef]
- Dowdeswell, J.A.; Siegert, M. The physiography of modern Antarctic subglacial lakes. Global Planet. Chang. 2003, 35, 221–236. [Google Scholar] [CrossRef]
- Carter, S.P. Radar-based subglacial lake classification in Antarctica, Geochem. Geophys. Geosy. 2007, 8, Q03016. [Google Scholar] [CrossRef]
- Zirizzotti, A.; Cafarella, L.; Urbini, S. Ice and Bedrock Characteristics Underneath Dome C (Antarctica) From Radio Echo Sounding Data Analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 37–43. [Google Scholar] [CrossRef]
- Urbini, S.; Cafarella, L.; Tabacco, I.E.; Baskaradas, J.A.; Serafini, M.; Zirizzotti, A. RES Signatures of Ice Bottom Near to Dome C (Antarctica). IEEE Trans. Geosci. Remote Sens. 2014, 53, 1558–1564. [Google Scholar] [CrossRef]
- Hills, B.H.; Christianson, K.; Holschuh, N. A framework for attenuation method selection evaluated with ice-penetrating radar data at South Pole Lake. Ann. Glaciol. 2020, 61, 176–187. [Google Scholar] [CrossRef]
- Fujita, S.; Holmlund, P.; Matsuoka, K.; Enomoto, H.; Fukui, K.; Nakazawa, F.; Sugiyama, S.; Surdyk, S. Radar diagnosis of the subglacial conditions in Dronning Maud Land, East Antarctica. Cryosphere 2012, 6, 1203–1219. [Google Scholar] [CrossRef]
- Macgregor, J.A.; Winebrenner, D.P.; Conway, H.; Matsuoka, K.; Mayewski, P.A.; Clow, G.D. Modeling Englacial Radar Attenuation at Siple Dome, West Antarctica, Using Ice Chemistry and Temperature Data. J. Geophys. Res.-Atmos. 2007, 112, F03008. [Google Scholar] [CrossRef]
- Jordan, T.M.; Bamber, J.L.; Williams, C.N.; Paden, J.; Siegert, M.; Huybrechts, P.; Gagliardini, O.; Gillet-Chaulet, F. An ice-sheet-wide framework for englacial attenuation from ice-penetrating radar data. Cryosphere 2016, 10, 1547–1570. [Google Scholar] [CrossRef]
- Macgregor, J.A.; Li, J.; Paden, J.; Catania, G.; Clow, G.D.; Fahnestock, M.; Gogineni, S.P.; Grimm, R.; Morlighem, M.; Nandi, S.; et al. Radar attenuation and temperature within the Greenland Ice Sheet. J.Geophys. Res. Earth Surf. 2015, 120, 983–1008. [Google Scholar] [CrossRef]
- Matsuoka, K.; Morse, D.; Raymond, C.F. Estimating englacial radar attenuation using depth profiles of the returned power, central West Antarctica. J. Geophys. Res. Earth Surf. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Matsuoka, K.; Macgregor, J.A.; Pattyn, F. Predicting radar attenuation within the Antarctic ice sheet. Earth Planet. Sci. Lett. 2012, 359–360, 173–183. [Google Scholar] [CrossRef]
- Matsuoka, K.; Pattyn, F.; Callens, D.; Conway, H. Radar characterization of the basal interface across the grounding zone of an ice-rise promontory in East Antarctica. Ann. Glaciol. 2012, 53, 29–34. [Google Scholar] [CrossRef]
- Holschuh, N.; Christianson, K.; Anandakrishnan, S.; Alley, R.B.; Jacobel, R.W. Constraining attenuation uncertainty in common midpoint radar surveys of ice sheets. J.Geophys. Res. Earth Surf. 2016, 121, 1876–1890. [Google Scholar] [CrossRef]
- Bingham, R.G.; Siegert, M.J. Radio-Echo Sounding Over Polar Ice Masses. J. Environ. Eng. Geoph. 2007, 12, 47–62. [Google Scholar] [CrossRef]
- Cui, X.; Sun, B.; Tian, G.; Tang, X.; Zhang, X.; Jiang, Y.; Guo, J.; Li, X. Ice radar investigation at Dome A, East Antarctica: Ice thickness and subglacial topography. Chin. Sci. Bull. 2010, 55, 425–431. [Google Scholar] [CrossRef]
- Tang, X.; Sun, B.; Guo, J.; Cui, X.; Zhao, B.; Chen, Y. A freeze-on ice zone along the Zhongshan–Kunlun ice sheet profile, East Antarctica, by a new ground-based ice-penetrating radar. Sci. Bull. 2015, 60, 574–576. [Google Scholar] [CrossRef]
- Tang, X.; Sun, B.; Wang, T. Internal layering structure and subglacial conditions along a traverse line from Zhongshan Station to Dome A, East Antarctica, revealed by ground-based radar sounding. Appl. Geophys. 2020, 17, 870–878. [Google Scholar] [CrossRef]
- Cui, X.; Wang, T.; Sun, B.; Tang, X.; Guo, J. Chinese radioglaciological studies on the Antarctic ice sheet: Progress and prospects. Adv. Polar Sci. 2017, 28, 14–23. [Google Scholar]
- Dong, S.; Tang, X.; Guo, J.; Fu, L.; Chen, X.; Sun, B. EisNet: Extracting Bedrock and Internal Layers From Radiostratigraphy of Ice Sheets With Machine Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Tang, X.; Luo, K.; Dong, S.; Zhang, Z.; Sun, B. Quantifying Basal Roughness and Internal Layer Continuity Index of Ice Sheets by an Integrated Means with Radar Data and Deep Learning. Remote Sens. 2022, 14, 4507. [Google Scholar] [CrossRef]
- Jacobel, R.W.; Welch, B.C.; Osterhouse, D.; Pettersson, R.; Gregor, J.A.M. Spatial variation of radar-derived basal conditions on Kamb Ice Stream, West Antarctica. Ann. Glaciol. 2009, 50, 10–16. [Google Scholar] [CrossRef]
- Winebrenner, D.; Smith, B.; Catania, G.; Conway, H.; Raymond, C. Radio frequency attenuation beneath Siple dome, West antarctica, from wide angle and profiling radar observations. Ann. Glaciol. 2003, 37, 226–232. [Google Scholar] [CrossRef]
- MacGregor, J.A.; Matsuoka, K.; Waddington, E.D.; Winebrenner, D.P.; Pattyn, F. Spatial variation of englacial radar attenuation: Modeling approach and application to the Vostok flowline. J.Geophys. Res. Earth Surf. 2012, 117, 1–15. [Google Scholar] [CrossRef]
- MacGregor, J.A.; Anandakrishnan, S.; Catania, G.A.; Winebrenner, D.P. The grounding zone of the Ross Ice Shelf, West Antarctica, from ice-penetrating radar. J. Glaciol. 2011, 57, 917–928. [Google Scholar] [CrossRef]
- Olivier, P.; Catherine, R.; Frédéric, P.; Stefano, U.; Massimo, F. Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling. Cryosphere 2017, 11, 2231–2246. [Google Scholar]
- Paxman, G.J.G.; Watts, A.B.; Ferraccioli, F.; Jordan, T.A.; Bell, R.E.; Jamieson, S.S.R.; Finn, C.A. Erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica. Earth Planet. Sci. Lett. 2016, 452, 1–14. [Google Scholar] [CrossRef]
Radar Systems | CHINARE 21 Dual-Frequency Radar | CHINARE 29 Developed Deep IPR |
---|---|---|
Antenna | Three-element Yagi | Log-periodical |
Center frequency/MHz | 60/179 | 150 |
Peak power/kW | 1 | 0.5 |
Pulse width/μs | 250/500/1000 | 2000/4000/8000 |
Sampling time window/μs | 50 | 50 |
Sampling frequency/MHz | 100 | 500 |
Noise/dB | <1 | <3 |
Dynamic range/dB | 80 | >110 |
Bandwidth/MHz | 4 | 100 |
Antenna gain/dBi | 7.2 | 9 |
Beam width/(°) | 70 | 60 |
Interface (Reflection/Transmission Losses) | Power Loss L (dB) |
---|---|
ice–air () | 0.35 |
air–ice () | 11.0 |
ice–water () | 3.5 |
ice–rock () | 11.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Tang, X.; Xiao, E.; Luo, K.; Dong, S.; Sun, B. Basal Melt Patterns around the Deep Ice Core Drilling Site in the Dome A Region from Ice-Penetrating Radar Measurements. Remote Sens. 2023, 15, 1726. https://doi.org/10.3390/rs15071726
Wang H, Tang X, Xiao E, Luo K, Dong S, Sun B. Basal Melt Patterns around the Deep Ice Core Drilling Site in the Dome A Region from Ice-Penetrating Radar Measurements. Remote Sensing. 2023; 15(7):1726. https://doi.org/10.3390/rs15071726
Chicago/Turabian StyleWang, Hao, Xueyuan Tang, Enzhao Xiao, Kun Luo, Sheng Dong, and Bo Sun. 2023. "Basal Melt Patterns around the Deep Ice Core Drilling Site in the Dome A Region from Ice-Penetrating Radar Measurements" Remote Sensing 15, no. 7: 1726. https://doi.org/10.3390/rs15071726
APA StyleWang, H., Tang, X., Xiao, E., Luo, K., Dong, S., & Sun, B. (2023). Basal Melt Patterns around the Deep Ice Core Drilling Site in the Dome A Region from Ice-Penetrating Radar Measurements. Remote Sensing, 15(7), 1726. https://doi.org/10.3390/rs15071726