Observed Quasi 16-Day Wave by Meteor Radar over 9 Years at Mengcheng (33.4°N, 116.5°E) and Comparison with the Whole Atmosphere Community Climate Model Simulation
Abstract
:1. Introduction
2. Horizontal Wind Measurements and Methods
2.1. Mengcheng Meteor Radar
2.2. WACCM Simulation
2.3. Data Analysis
3. Results
4. Discussion
4.1. Relationship with the Zonal Wind Shear
4.2. Interannual Variability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- John, S.R.; Kumar, K.K. Global Normal Mode Planetary Wave Activity: A Study Using TIMED/SABER Observations from the Stratosphere to the Mesosphere-Lower Thermosphere. Clim. Dyn. 2016, 47, 3863–3881. [Google Scholar] [CrossRef]
- Gu, S.-Y.; Li, T.; Dou, X.; Wu, Q.; Mlynczak, M.G.; Russell, J.M. Observations of Quasi-Two-Day Wave by TIMED/SABER and TIMED/TIDI. J. Geophys. Res. Atmos. 2013, 118, 1624–1639. [Google Scholar] [CrossRef]
- Gu, S.-Y.; Li, T.; Dou, X.; Wang, N.-N.; Riggin, D.; Fritts, D. Long-Term Observations of the Quasi Two-Day Wave by Hawaii MF Radar. J. Geophys. Res. Space Phys. 2013, 118, 7886–7894. [Google Scholar] [CrossRef]
- Riggin, D.M.; Liu, H.-L.; Lieberman, R.S.; Roble, R.G.; Russell, J.M., III; Mertens, C.J.; Mlynczak, M.G.; Pancheva, D.; Franke, S.J.; Murayama, Y.; et al. Observations of the 5-Day Wave in the Mesosphere and Lower Thermosphere. J. Atmos. Sol.-Terr. Phys. 2006, 68, 323–339. [Google Scholar] [CrossRef]
- Gu, S.; Liu, H.; Li, T.; Dou, X.; Wu, Q.; Russell, J.M. Observation of the Neutral-ion Coupling through 6 Day Planetary Wave. J. Geophys. Res. Space Phys. 2014, 119, 10376–10383. [Google Scholar] [CrossRef]
- Gu, S.-Y.; Ruan, H.; Yang, C.-Y.; Gan, Q.; Dou, X.; Wang, N. The Morphology of the 6-Day Wave in Both the Neutral Atmosphere and F Region Ionosphere Under Solar Minimum Conditions. J. Geophys. Res. Space Phys. 2018, 123, 4232–4240. [Google Scholar] [CrossRef]
- Gong, Y.; Li, C.; Ma, Z.; Zhang, S.; Zhou, Q.; Huang, C.; Huang, K.; Li, G.; Ning, B. Study of the Quasi-5-Day Wave in the MLT Region by a Meteor Radar Chain. J. Geophys. Res. Atmos. 2018, 123, 9474–9487. [Google Scholar] [CrossRef]
- Qin, Y.; Gu, S.; Dou, X.; Teng, C.; Li, H. On the Westward Quasi-8-Day Planetary Waves in the Middle Atmosphere during Arctic Sudden Stratospheric Warmings. J. Geophys. Res. Atmos. 2021, 126, e2021JD035071. [Google Scholar] [CrossRef]
- Qin, Y.; Gu, S.; Dou, X.; Teng, C.; Yang, Z. Secondary 12-Day Planetary Wave in the Mesospheric Water Vapor during the 2016/2017 Unusual Canadian Stratospheric Warming. Geophys. Res. Lett. 2022, 49, e2021GL097024. [Google Scholar] [CrossRef]
- Luo, J.; Gong, Y.; Ma, Z.; Zhang, S.; Zhou, Q.; Huang, C.; Huang, K.; Yu, Y.; Li, G. Study of the Quasi 10-Day Waves in the MLT Region during the 2018 February SSW by a Meteor Radar Chain. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028367. [Google Scholar] [CrossRef]
- Mitchell, N.J.; Middleton, H.R.; Beard, A.G.; Williams, P.J.S.; Muller, H.G. The 16-Day Planetary Wave in the Mesosphere and Lower Thermosphere. Ann. Geophys. 1999, 17, 1447–1456. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, H.; Ma, Z.; Zhang, S.; Zhou, Q.; Huang, C.; Huang, K. A Statistical Analysis of the Propagating Quasi 16-Day Waves at High Latitudes and Their Response to Sudden Stratospheric Warmings from 2005 to 2018. J. Geophys. Res. Atmos. 2019, 124, 12617–12630. [Google Scholar] [CrossRef]
- Gong, Y.; Ma, Z.; Li, C.; Lv, X.; Zhang, S.; Zhou, Q.; Huang, C.; Huang, K.; Yu, Y.; Li, G.; et al. Characteristics of the Quasi-16-Day Wave in the Mesosphere and Lower Thermosphere Region as Revealed by Meteor Radar, Aura Satellite, and MERRA2 Reanalysis Data from 2008 to 2017. Earth Planet. Phys. 2020, 4, 274–284. [Google Scholar] [CrossRef]
- Gu, S.-Y.; Liu, H.-L.; Dou, X.; Li, T. Influence of the Sudden Stratospheric Warming on Quasi-2-Day Waves. Atmos. Chem. Phys. 2016, 16, 4885–4896. [Google Scholar] [CrossRef]
- Charney, J.G.; Drazin, P.G. Propagation of Planetary-Scale Disturbances from the Lower into the Upper Atmosphere. J. Geophys. Res. 1961, 66, 83–109. [Google Scholar] [CrossRef]
- Forbes, J.M.; Hagan, M.E.; Miyahara, S.; Vial, F.; Manson, A.H.; Meek, C.E.; Portnyagin, Y.I. Quasi 16-Day Oscillation in the Mesosphere and Lower Thermosphere. J. Geophys. Res. 1995, 100, 9149. [Google Scholar] [CrossRef]
- Kingsley, S.P.; Muller, H.G.; Nelson, L.; Scholefield, A. Meteor Winds over Sheffield (53°N, 2°W). J. Atmos. Terr. Phys. 1978, 40, 917–922. [Google Scholar] [CrossRef]
- Luo, Y.; Manson, A.H.; Meek, C.E.; Meyer, C.K.; Forbes, J.M. The Quasi 16-Day Oscillations in the Mesosphere and Lower Thermosphere at Saskatoon (52°N, 107°W), 1980–1996. J. Geophys. Res. Atmos. 2000, 105, 2125–2138. [Google Scholar] [CrossRef]
- Takahashi, H.; Shiokawa, K.; Egito, F.; Murayama, Y.; Kawamura, S.; Wrasse, C.M. Planetary Wave Induced Wind and Airglow Oscillations in the Middle Latitude MLT Region. J. Atmos. Sol.-Terr. Phys. 2013, 98, 97–104. [Google Scholar] [CrossRef]
- Guharay, A.; Batista, P.P.; Clemesha, B.R.; Buriti, R.A.; Schuch, N.J. Latitudinal Variability of the Quasi-16-Day Wave in the Middle Atmosphere over Brazilian Stations. Ann. Geophys. 2016, 34, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Lima, L.M.; Batista, P.P.; Clemesha, B.R.; Takahashi, H. 16-Day Wave Observed in the Meteor Winds at Low Latitudes in the Southern Hemisphere. Adv. Space Res. 2006, 38, 2615–2620. [Google Scholar] [CrossRef]
- Araújo, L.R.; Lima, L.M.; Batista, P.P.; Clemesha, B.R.; Takahashi, H. Planetary Wave Seasonality from Meteor Wind Measurements at 7.4° S and 22.7° S. Ann. Geophys. 2014, 32, 519–531. [Google Scholar] [CrossRef]
- Holdsworth, D.A.; Reid, I.M.; Cervera, M.A. Buckland Park all-sky interferometric meteor radar. Radio Sci. 2004, 39, 1–12. [Google Scholar] [CrossRef]
- Reid, I.M.; McIntosh, D.L.; Murphy, D.J.; Vincent, R.A. Mesospheric radar wind comparisons at high and middle southern latitudes. Earth Planets Space. 2018, 70, 84. [Google Scholar] [CrossRef]
- Zeng, J.; Yi, W.; Xue, X.; Reid, I.; Hao, X.; Li, N.; Chen, J.; Chen, T.; Dou, X. Comparison between the Mesospheric Winds Observed by Two Collocated Meteor Radars at Low Latitudes. Remote Sens. 2022, 14, 2354. [Google Scholar] [CrossRef]
- Marsh, D.R.; Mills, M.J.; Kinnison, D.E.; Lamarque, J.-F.; Calvo, N.; Polvani, L.M. Climate Change from 1850 to 2005 Simulated in CESM1(WACCM). J. Clim. 2013, 26, 7372–7391. [Google Scholar] [CrossRef]
- Kunz, A.; Pan, L.L.; Konopka, P.; Kinnison, D.E.; Tilmes, S. Chemical and Dynamical Discontinuity at the Extratropical Tropopause Based on START08 and WACCM Analyses. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Stober, G.; Jacobi, C.; Fröhlich, K.; Oberheide, J. Meteor Radar Temperatures over Collm (51.3°N, 13°E). Adv. Space Res. 2008, 42, 1253–1258. [Google Scholar] [CrossRef]
- Hocking, W.K.; Fuller, B.; Vandepeer, B. Real-Time Determination of Meteor-Related Parameters Utilizing Modern Digital Technology. J. Atmos. Sol.-Terr. Phys. 2001, 63, 155–169. [Google Scholar] [CrossRef]
- Lomb, N.R. Least-Squares Frequency Analysis of Unequally Spaced Data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Fougere, P.F. On the Accuracy of Spectrum Analysis of Red Noise Processes Using Maximum Entropy and Periodogram Methods: Simulation Studies and Application to Geophysical Data. J. Geophys. Res. 1985, 90, 4355. [Google Scholar] [CrossRef]
- Espy, P.J.; Stegman, J.; Witt, G. Interannual Variations of the Quasi-16-Day Oscillation in the Polar Summer Mesospheric Temperature. J. Geophys. Res. Atmos. 1997, 102, 1983–1990. [Google Scholar] [CrossRef]
- Day, K.A.; Hibbins, R.E.; Mitchell, N.J. Aura MLS Observations of the Westward-Propagating s = 1, 16-Day Planetary Wave in the Stratosphere, Mesosphere and Lower Thermosphere. Atmos. Chem. Phys. 2011, 11, 4149–4161. [Google Scholar] [CrossRef]
- Yi, W.; Xue, X.; Reid, I.M.; Murphy, D.J.; Hall, C.M.; Tsutsumi, M.; Ning, B.; Li, G.; Yang, G.; Li, N.; et al. Climatology of Interhemispheric Mesopause Temperatures Using the High-Latitude and Middle-Latitude Meteor Radars. J. Geophys. Res. Atmos. 2021, 126, e2020JD034301. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Matthias, V. Large-Amplitude Quasi-10-Day Waves in the Middle Atmosphere During Final Warmings. J. Geophys. Res. Atmos. 2019, 124, 9874–9892. [Google Scholar] [CrossRef]
- Lilienthal, F.; Jacobi, C. Meteor Radar Quasi 2-Day Wave Observations over 10 Years at Collm (51.3°N, 13.0°E). Atmos. Chem. Phys. 2015, 15, 9917–9927. [Google Scholar] [CrossRef]
- Jacobi, C.; Schminder, R.; Kürschner, D. Planetary Wave Activity Obtained from Long-Period (2–18 Days) Variations of Mesopause Region Winds over Central Europe (52°N, 15°E). J. Atmos. Sol.-Terr. Phys. 1998, 60, 81–93. [Google Scholar] [CrossRef]
- Fagundes, P.R.; Pillat, V.G.; Bolzan, M.J.A.; Sahai, Y.; Becker-Guedes, F.; Abalde, J.R.; Aranha, S.L.; Bittencourt, J.A. Observations of F Layer Electron Density Profiles Modulated by Planetary Wave Type Oscillations in the Equatorial Ionospheric Anomaly Region. J. Geophys. Res. 2005, 110, A12302. [Google Scholar] [CrossRef]
- Gan, Q.; Eastes, R.W.; Burns, A.G.; Wang, W.; Qian, L.; Solomon, S.C.; Codrescu, M.V.; McClintock, W.E. New Observations of Large-Scale Waves Coupling with the Ionosphere Made by the GOLD Mission: Quasi-16-Day Wave Signatures in the F-Region OI 135.6-nm Nightglow During Sudden Stratospheric Warmings. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027880. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, D.; Hao, Y.; Xiao, Z. Multi-instrumental Observations of the Quasi-16-Day Variations from the Lower Thermosphere to the Topside Ionosphere in the Low-Latitude Eastern Asian Sector during the 2017 Sudden Stratospheric Warming Event. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027505. [Google Scholar] [CrossRef]
Frequency | 38.9 MHz |
PRF | 430 Hz |
Peak power | 20 kW |
Coherent integrations | 4 |
Range resolution | 1.8 km |
Pulse type | Gaussian |
Pulse width | 24 |
Bandwidth | 18.1 kHz |
Duty cycle | 15% |
Detection range | 70−110 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Lai, D.; Yi, W.; Wu, J.; Xue, X.; Li, T.; Chen, T.; Dou, X. Observed Quasi 16-Day Wave by Meteor Radar over 9 Years at Mengcheng (33.4°N, 116.5°E) and Comparison with the Whole Atmosphere Community Climate Model Simulation. Remote Sens. 2023, 15, 830. https://doi.org/10.3390/rs15030830
Yang C, Lai D, Yi W, Wu J, Xue X, Li T, Chen T, Dou X. Observed Quasi 16-Day Wave by Meteor Radar over 9 Years at Mengcheng (33.4°N, 116.5°E) and Comparison with the Whole Atmosphere Community Climate Model Simulation. Remote Sensing. 2023; 15(3):830. https://doi.org/10.3390/rs15030830
Chicago/Turabian StyleYang, Chengyun, Dexin Lai, Wen Yi, Jianfei Wu, Xianghui Xue, Tao Li, Tingdi Chen, and Xiankang Dou. 2023. "Observed Quasi 16-Day Wave by Meteor Radar over 9 Years at Mengcheng (33.4°N, 116.5°E) and Comparison with the Whole Atmosphere Community Climate Model Simulation" Remote Sensing 15, no. 3: 830. https://doi.org/10.3390/rs15030830
APA StyleYang, C., Lai, D., Yi, W., Wu, J., Xue, X., Li, T., Chen, T., & Dou, X. (2023). Observed Quasi 16-Day Wave by Meteor Radar over 9 Years at Mengcheng (33.4°N, 116.5°E) and Comparison with the Whole Atmosphere Community Climate Model Simulation. Remote Sensing, 15(3), 830. https://doi.org/10.3390/rs15030830