Modelling Paroxysmal and Mild-Strombolian Eruptive Plumes at Stromboli and Mt. Etna on 28 August 2019
Abstract
:1. Introduction
2. Volcanology Framework
3. Data and Methods
3.1. Ground-Based SO Flux Emission
3.2. WRF-Chem Setup
3.3. Tropomi Data
4. Results and Discussion
4.1. Synoptic Analysis
4.2. Results from the WRF-Chem Model and Comparison with TROPOMI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Advisory | Aviation Colour Code | Eruption Details | TEM (Rmk) |
---|---|---|---|
2019-08-28 10:56 UTC | Red | Explosion at summit | Significant ash emission |
2019-08-28 12:00 UTC | Red | Strong Eruption with ash emission occurred at 10:17 UTC. Eruption has decreased now | Ash emission now seems negligible |
2019-08-28 15:00 UTC | Orange | Negligible ash emission | VA not identifiable on sat imagery in spite of good visibility. Some volcanic ash possible in the direct vicinity of the volcano. |
References
- Loughlin, S.; Sparks, S.; Brown, S.; Jenkins, S.; Vye-Brown, C. Global Volcanic Hazards and Risk; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- Schmidt, A.; Ostro, B.; Carslaw, K.S.; Wilson, M.; Thordarson, T.; Mann, G.W.; Simmons, A.J. Excess mortality in Europe following a future Laki-style Icelandic eruption. Proc. Natl. Acad. Sci. USA 2011, 108, 15710–15715. [Google Scholar] [CrossRef] [PubMed]
- Carn, S.A.; Krueger, A.J.; Krotkov, N.A.; Yang, K.; Evans, K. Tracking volcanic sulfur dioxide clouds for aviation hazard mitigation. Nat. Hazards 2009, 51, 325–343. [Google Scholar] [CrossRef]
- Fisher, S.M. Sulfidation: Turbine blade corrosion. In Aircraft Maintenance Technology; 2008; pp. 12–15. Available online: https://scholar.google.com/scholar_lookup?hl=en&volume=May+2008&publication_year=2008&pages=12-15&journal=Aircraft+Maint.+Technol.&author=S.+M.+Fisher&title=Sulfidation%3A+Turbine+blade+corrosion (accessed on 17 March 2023).
- Millert, T.; Casadevall, T. Volcanic ash hazards to aviation. In Encyclopedia of Volcanoes; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Grainger, R.G.; Highwood, E.J. Changes in stratospheric composition, chemistry, radiation and climate caused by volcanic eruptions. Geol. Soc. Spec. Publ. 2003, 213, 329–347. [Google Scholar] [CrossRef]
- Self, S.; Zhao, J.X.; Holasek, R.E.; Torres, R.C.; King, A.J. The Atmospheric Impact of the 1991 Mount Pinatubo Eruption; No. NASA/CR-93-207274. 1993. Available online: https://ntrs.nasa.gov/citations/19990021520 (accessed on 17 March 2023).
- McCormick, M.P.; Thomason, L.W.; Trepte, C.R. Atmospheric effects of the Mt Pinatubo eruption. Nature 1995, 373, 399–404. [Google Scholar] [CrossRef]
- Oppenheimer, C. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog. Phys. Geogr. 2003, 27, 230–259. [Google Scholar] [CrossRef]
- Kloss, C.; Berthet, G.; Sellitto, P.; Ploeger, F.; Taha, G.; Tidiga, M.; Eremenko, M.; Bossolasco, A.; Jégou, F.; Renard, J.-B.; et al. Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing. Atmos. Chem. Phys. 2021, 21, 535–560. [Google Scholar] [CrossRef]
- Sellitto, P.; Podglajen, A.; Belhadji, R.; Boichu, M.; Carboni, E.; Cuesta, J.; Duchamp, C.; Kloss, C.; Siddans, R.; Bègue, N.; et al. The unexpected radiative impact of the Hunga Tonga eruption of 15th January 2022. Commun. Earth Environ. 2022, 3, 288. [Google Scholar] [CrossRef]
- Jenkins, S.; Smith, C.; Allen, M.; Grainger, R. Tonga eruption increases chance of temporary surface temperature anomaly above 1.5 °C. Nat. Clim. Chang. 2023, 13, 127–129. [Google Scholar] [CrossRef]
- Oppenheimer, C. Volcanoes and global climate change. In Eruptions that Shook the World; Cambridge University Press: Cambridge, UK, 2011; pp. 53–76. [Google Scholar] [CrossRef]
- Luterbacher, J.; Pfister, C. The year without a summer. Nat. Geosci. 2015, 8, 246–248. [Google Scholar] [CrossRef]
- Peterson, R.A.; Dean, K. Coupling a Lagrangian Dispersion Model and Remote Sensing Data for Quantification of Volcanic Ash Transport and Deposition. In Proceedings of the American Geophysical Union, Fall Meeting 2003, San Francisco, CA, USA, 8–12 December 2003. [Google Scholar]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled online chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Folch, A.; Costa, A.; Macedonio, G. FALL3D: A computational model for transport and deposition of volcanic ash. Comput. Geosci. 2009, 35, 1334–1342. [Google Scholar] [CrossRef]
- Kampouri, A.; Amiridis, V.; Georgiou, T.; Solomos, S.; Binietoglou, I.; Gialitaki, A.; Marinou, E.; Gkikas, A.; Proestakis, E.; Rennie, M.; et al. Inversion Techniques on Etna’s Volcanic Emissions and the Impact of Aeolus on Quantitative Dispersion Modeling. Environ. Sci. Proc. 2023, 26, 187. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Hurst, T.; Davis, C. Forecasting volcanic ash deposition using HYSPLIT. J. Appl. Volcanol. 2017, 6, 5. [Google Scholar] [CrossRef]
- Jones, A.; Thomson, D.; Hort, M.; Devenish, B. The U.K. Met Office’s Next-Generation Atmospheric Dispersion Model, NAME III. In Air Pollution Modeling and Its Application XVII, Proceedings of the 27 NATO/CCMS International Technical Meeting on Air Pollution Modeling and Its Application, Banff, AB, Canada, 24–29 October 2004; Springer: Boston, MA, USA, 2007; pp. 580–589. [Google Scholar] [CrossRef]
- Heard, I.P.C.; Manning, A.J.; Haywood, J.M.; Witham, C.; Redington, A.; Jones, A.; Clarisse, L.; Bourassa, A. A comparison of atmospheric dispersion model predictions with observations of SO2 and sulphate aerosol from volcanic eruptions. J. Geophys. Res. Atmos. 2012, 117, D00U22. [Google Scholar] [CrossRef]
- Rizza, U.; Donnadieu, F.; Magazu, S.; Passerini, G.; Castorina, G.; Semprebello, A.; Morichetti, M.; Virgili, S.; Mancinelli, E. Effects of Variable Eruption Source Parameters on Volcanic Plume Transport: Example of the 23 November 2013 Paroxysm of Etna. Remote. Sens. 2021, 13, 4037. [Google Scholar] [CrossRef]
- Rizza, U.; Donnadieu, F.; Morichetti, M.; Avolio, M.; Castorina, G.; Semprebello, A.; Magazu, S.; Passerini, G.; Mancinelli, E.; Biensan, C. Airspace contamination by volcanic ash from sequences of Etna paroxysms: Coupling the WRF-Chem dispersion model with near-source L-band radar observations. Remote. Sens. 2023, 15, 3760. [Google Scholar] [CrossRef]
- Surl, L.; Donohoue, D.; von Glasow, R. Modelling the regional impact of volcanic bromine using WRF-Chem. In Proceedings of the EGU General Assembly 2014, Vienna, Austria, 27 April–2 May 2014; p. EGU2014-1509. [Google Scholar]
- Surl, L.; Warnach, S.; Wagner, T.; Roberts, T.; Bekki, S. Using WRF-Chem Volcano to model the in-plume halogen chemistry of Etna’s 2018 eruption. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020; p. EGU2020-10892. [Google Scholar] [CrossRef]
- Pöschl, U. Gas–particle interactions of tropospheric aerosols: Kinetic and thermodynamic perspectives of multiphase chemical reactions, amorphous organic substances, and the activation of cloud condensation nuclei. Atmos. Res. 2011, 101, 562–573. [Google Scholar] [CrossRef]
- Pianezze, J.; Tulet, P.; Foucart, B.; Leriche, M.; Liuzzo, M.; Salerno, G.; Colomb, A.; Freney, E.; Sellegri, K. Volcanic plume aging during passive degassing and low eruptive events of Etna and Stromboli volcanoes. J. Geophys. Res. Atmos. 2019, 124. [Google Scholar] [CrossRef]
- Arghavani, S.; Rose, C.; Banson, S.; Lupascu, A.; Gouhier, M.; Sellegri, K.; Planche, C. The Effect of Using a New Parameterization of Nucleation in the WRF-Chem Model on New Particle Formation in a Passive Volcanic Plume. Atmosphere 2022, 13, 15. [Google Scholar] [CrossRef]
- Allard, P.; Carbonnelle, J.; Dajlevic, D.; Le Bronec, J.; Morel, P.; Robe, M.C.; Maurenas, J.M.; Faivre-Pierret, R.; Martin, D.; Sabroux, J.C.; et al. Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 1991, 351, 387–391. [Google Scholar] [CrossRef]
- Burton, M.R.; Sawyer, G.M.; Granieri, D. Deep Carbon Emissions from Volcanoes. Rev. Mineral. Geochem. 2013, 75, 323–354. [Google Scholar] [CrossRef]
- Aiuppa, A.; Giudice, G.; Gurrieri, S.; Liuzzo, M.; Burton, M.; Caltabiano, T.; McGonigle, A.J.S.; Salerno, G.; Shinohara, H.; Valenza, M. Total volatile flux from Mount Etna. Geophys. Res. Lett. 2008, 35, L24302. [Google Scholar] [CrossRef]
- Barberi, F.; Rosi, M.; Sodi, A. Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanol. 1993, 3, 173–187. [Google Scholar]
- Allard, P.; Aiuppa, A.; Loyer, H.; Carrot, F.; Gaudry, A.; Pinte, G.; Michel, A.; Dongarrà, G. Acid gas and metal emission rates during long-lived basalt degassing at Stromboli Volcano. Geophys. Res. Lett. 2000, 27, 1207–1210. [Google Scholar] [CrossRef]
- Allard, P.; Aiuppa, A.; Burton, M.; Caltabiano, T.; Federico, C.; Salerno, G.; La Spina, A. Crater gas emissions and the magma feeding system of Stromboli volcano. In The Stromboli Volcano: An Integrated Study of the 2002–2003 Eruption; Calvari, S., Inguaggiato, S., Puglisi, G., Ripepe, M., Rosi, M., Eds.; American Geophysical Union: Washington, DC, USA, 2008; Volume 182, pp. 65–80. [Google Scholar] [CrossRef]
- Aiuppa, A.; Inguaggiato, S.; Mcgonigle, A.; O’Dwyer, M.; Oppenheimer, C.; Padgett, M.; Rouwet, D.; Valenza, M. H2S fluxes from Mt. Etna, Stromboli, and Vulcano (Italy) and implications for the sulfur budget at volcanoes. Geochim. Cosmochim. Acta 2005, 69, 1861–1871. [Google Scholar] [CrossRef]
- Sellitto, P.; Salerno, G.; Doussin, J.-F.; Triquet, S.; Dulac, F.; Desboeufs, K. Photometric Observations of Aerosol Optical Properties and Emission Flux Rates of Stromboli Volcano Plume during the PEACETIME Campaign. Remote. Sens. 2021, 13, 4016. [Google Scholar] [CrossRef]
- Aiuppa, A.; Bertagnini, A.; Métrich, N.; Moretti, R.; Di Muro, A.; Liuzzo, M.; Tamburello, G. A model of degassing for Stromboli volcano. Earth Planet. Sci. Lett. 2010, 295, 195–204. [Google Scholar] [CrossRef]
- Lentini, F.; Carbone, S. Geologia della Sicilia—Geology of Sicily. Memorie descrittive della Carta Geologica d’Italia 2014, 95, 7–414. [Google Scholar]
- Branca, S.; Del Carlo, P. Eruptions of Mt. Etna during the past 3,200 Years: A revised compilation integrating the historical and stratigraphic records. In Mt. Etna: Volcano Laboratory; Bonaccorso, A., Calvari, S., Coltelli, M., Negro, C.D., Falsaperla, S., Eds.; American Geophysical Union: Washington, DC, USA, 2004; Volume 143, pp. 1–27. [Google Scholar] [CrossRef]
- Rosi, M.; Bertagnini, A.; Landi, P. Onset of the persistent activity at Stromboli Volcano (Italy). Bull. Volcanol. 2000, 62, 294–300. [Google Scholar] [CrossRef]
- Bollettino Settimanale sul Monitoraggio Multiparametrico del Vulcano Etna. Available online: https://www.ct.ingv.it/ (accessed on 17 March 2023).
- Giordano, G.; De Astis, G. The summer 2019 basaltic Vulcanian eruptions (paroxysms) of Stromboli. Bull. Volcanol. 2021, 83, 1. [Google Scholar] [CrossRef]
- Andronico, D.; Del Bello, E.; D’Oriano, C.; Landi, P.; Pardini, F.; Scarlato, P.; de’ Michieli Vitturi, M.; Taddeucci, J.; Cristaldi, A.; Ciancitto, F.; et al. Uncovering the eruptive patterns of the 2019 double paroxysm eruption crisis of Stromboli volcano. Nat. Commun. 2021, 12, 4213. [Google Scholar] [CrossRef] [PubMed]
- Sciotto, M.; Watson, L.M.; Cannata, A.; Cantarero, M.; De Beni, E.; Johnson, J.B. Infrasonic gliding reflects a rising magma column at Mount Etna (Italy). Sci. Rep. 2022, 12, 16954. [Google Scholar] [CrossRef] [PubMed]
- Salerno, G.G.; Burton, M.R.; Di Grazia, G.; Caltabiano, T.; Oppenheimer, C. Coupling between Magmatic Degassing and Volcanic Tremor in Basaltic Volcanism. Front. Earth Sci. 2018, 6, 157. [Google Scholar] [CrossRef]
- Platt, U.; Stutz, J. Differential Optical Absorption Spectroscopy Principles and Applications. In Physics of Earth and Space Environments; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Salerno, G.G.; Burton, M.R.; Oppenheimer, C.; Caltabiano, T.; Tsanev, V.I.; Bruno, N. Novel retrieval of volcanic SO2 abundance from ultraviolet spectra. J. Volcanol. Geotherm. Res. 2009, 181, 141–153. [Google Scholar] [CrossRef]
- Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather. Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Janjić, Z.I. The surface layer in the NCEP Eta Model. In Proceedings of the Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, USA, 19–23 August 1996; American Meteorological Society: Boston, MA, USA, 1996. [Google Scholar]
- Niu, G.-Y.; Yang, Z.-L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmspheres 2011, 116. [Google Scholar] [CrossRef]
- Chou, M.D.; Suarez, M.J. A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. 1999, 15, 40. [Google Scholar]
- Lang, S.E.; Tao, W.K.; Chern, J.D.; Wu, D.; Li, X. Benefits of a fourth ice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme. J. Atmos. Sci. 2014, 71, 3583–3612. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote. Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Theys, N.; De Smedt, I.; Yu, H.; Danckaert, T.; van Gent, J.; Hörmann, C.; Wagner, T.; Hedelt, P.; Bauer, H.; Romahn, F.; et al. Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: Algorithm theoretical basis. Atmos. Meas. Tech. 2017, 10, 119–153. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar] [CrossRef]
Component | Namelist | Description |
---|---|---|
Microphysics | mp_physics = 7 | New Goddard 4-Ice Scheme |
SW radiation | ra_physics = 5 | New Goddard Shortwave Schemes |
LW radiation | ra_physics = 5 | New Goddard Longwave Schemes |
Surface Layer | sf_sfclay_physics = 2 | Eta Similarity Scheme |
PBL | bl_pbl_physics = 2 | Mellor–Yamada–Janjic Scheme (MYJ) |
Land surface | sf_surface_physics = 4 | Noah–MP Land Surface Model |
Chemistry | chem_opt = 402 | chem_volc package |
Event | Start Eruption (UTC) HH:MM:SS | End Eruption (UTC) HH:MM:SS | TEM (SO) Tg | Injection Height(asl) km |
---|---|---|---|---|
STR1 | 05:53:00 | 15:03:00 | 0.077 | 1–5.5–1 |
ETN1 | 06:13:30 | 16:04:00 | 0.499 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castorina, G.; Semprebello, A.; Gattuso, A.; Salerno, G.; Sellitto, P.; Italiano, F.; Rizza, U. Modelling Paroxysmal and Mild-Strombolian Eruptive Plumes at Stromboli and Mt. Etna on 28 August 2019. Remote Sens. 2023, 15, 5727. https://doi.org/10.3390/rs15245727
Castorina G, Semprebello A, Gattuso A, Salerno G, Sellitto P, Italiano F, Rizza U. Modelling Paroxysmal and Mild-Strombolian Eruptive Plumes at Stromboli and Mt. Etna on 28 August 2019. Remote Sensing. 2023; 15(24):5727. https://doi.org/10.3390/rs15245727
Chicago/Turabian StyleCastorina, Giuseppe, Agostino Semprebello, Alessandro Gattuso, Giuseppe Salerno, Pasquale Sellitto, Francesco Italiano, and Umberto Rizza. 2023. "Modelling Paroxysmal and Mild-Strombolian Eruptive Plumes at Stromboli and Mt. Etna on 28 August 2019" Remote Sensing 15, no. 24: 5727. https://doi.org/10.3390/rs15245727
APA StyleCastorina, G., Semprebello, A., Gattuso, A., Salerno, G., Sellitto, P., Italiano, F., & Rizza, U. (2023). Modelling Paroxysmal and Mild-Strombolian Eruptive Plumes at Stromboli and Mt. Etna on 28 August 2019. Remote Sensing, 15(24), 5727. https://doi.org/10.3390/rs15245727