The Impact Mechanism of Climate and Vegetation Changes on the Blue and Green Water Flow in the Main Ecosystems of the Hanjiang River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Region
2.2. Materials
2.3. Methods
2.3.1. SWAT Model
2.3.2. The Calibration and Verification of the Model
2.3.3. Calculation of BWF and GWF
2.3.4. Driving Mechanism Analysis Methods
- Morlet Wavelet Analysis
- 2.
- Pearson’s Correlation Coefficient
- 3.
- Land Use Transfer Matrix
3. Results
3.1. Variation in Temporal and Spatial Dimensions of BWF and GWF in Main Ecosystems of the Basin in Recent 50 Years
3.2. Driving Mechanism of BWF and GWF Change
3.2.1. The Correlation between Climate Change and BWF and GWF and Its Driving Mechanism
3.2.2. The Correlation between NDVI and BWF and GWF and Its Driving Mechanism
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faramarzi, M.; Abbaspour, K.C.; Schulin, R.; Yang, H. Modelling blue and green water resources availability in Iran. Hydrol. Process. 2009, 23, 486–501. [Google Scholar] [CrossRef]
- Falkenmark, M.; Rockström, J. The new blue and green water paradigm: Breaking new ground for water resources planning and management. J. Water Resour. Plan. Manag. 2006, 132, 129–132. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Green-blue water accounting in a soil water balance. Adv. Water Resour. 2019, 129, 112–117. [Google Scholar] [CrossRef]
- Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro-scale water scarcity requires micro-scale approaches: Aspects of vulnerability in semi-arid development. In Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK, 1989; pp. 258–267. [Google Scholar]
- Liu, C.; Liu, X.; Yu, J.; Yang, S.; Zhao, C.; Men, B.; Zhao, Z.; Wang, H. The Rise of Eco-hydrology: A Review of Theoretical and Practical Issues. J. Beijing Norm. Univ. 2022, 58, 412–423. [Google Scholar] [CrossRef]
- Liu, J.; Zehnder, A.J.B.; Yang, H. Global consumptive water use for crop production: The importance of green water and virtual water. Water Resour. Res. 2009, 45, W05428. [Google Scholar] [CrossRef]
- Zang, C.; Liu, J. Trend analysis for the flows of green and blue water in the Heihe River basin, northwestern China. J. Hydrol. 2013, 502, 27–36. [Google Scholar] [CrossRef]
- Rockström, J.; Falkenmark, M.; Karlberg, L.; Hoff, H.; Rost, S.; Gerten, D. Future water availability for global food production: The potential of green water for increasing resilience to global change. Water Resour. Res. 2009, 45, W00A12. [Google Scholar] [CrossRef]
- Jackson, R.B.; Carpenter, S.R.; Dahm, C.N.; McKnight, D.M.; Naiman, R.J.; Postel, S.L.; Running, S.W. Water in a Changing World. Ecol. Appl. 2001, 11, 1027–1045. [Google Scholar] [CrossRef]
- Cheng, G.; Zhao, W. Green Water and its Research Progress. Adv. Earth Sci. 2006, 21, 221–227. [Google Scholar]
- Jewitt, G. Integrating blue and green water flows for water resources management and planning. Phys. Chem. Earth Parts A/B/C 2006, 31, 753–762. [Google Scholar] [CrossRef]
- Misra, A.K. Climate change and challenges of water and food security. Int. J. Sustain. Built Environ. 2014, 3, 153–165. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M. Beyond Global Warming: Ecology and Global Change. Ecology 1994, 75, 1861–1876. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. Transitions towards adaptive management of water facing climate and global change. Water Resour. Manag. 2006, 21, 49–62. [Google Scholar] [CrossRef]
- Rost, S.; Gerten, D.; Bondeau, A.; Lucht, W.; Rohwer, J.; Schaphoff, S. Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 2008, 44, W09405. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Y.; Mu, X.; Zuo, Q.; Zhou, Y.; Zhao, G. Trends and Key Directions of Eco-hydrology in China. Acta Geogr. Sin. 2020, 75, 445–457. [Google Scholar] [CrossRef]
- Maes, W.H.; Heuvelmans, G.; Muys, B. Assessment of land use impact on water-related ecosystem services capturing the integrated terrestrial—Aquatic system. Environ. Sci. Technol. 2009, 43, 7324–7330. [Google Scholar] [CrossRef]
- Brussard, P.F.; Reed, J.M.; Tracy, C.R. Ecosystem management: What is it really? Landsc. Urban Plan. 1998, 40, 9–20. [Google Scholar] [CrossRef]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- Zang, C.; Mao, G. A Spatial and Temporal Study of the Green and Blue Water Flow Distribution in Typical Ecosystems and its Ecosystem Services Function in an Arid Basin. Water 2019, 11, 97. [Google Scholar] [CrossRef]
- Li, Z.; Huang, B.; Qiu, J.; Cai, Y.; Yang, Z.; Chen, S. Analysis of the Evolution Characteristics of Hanjiang River Basin Ecological Flow under Changing Environment. Water Resour. Prot. 2021, 37, 22–29. [Google Scholar] [CrossRef]
- Li, Y.; Deng, J.; Zang, C.; Kong, M.; Zhao, J. Spatial and temporal evolution characteristics of water resources in the Hanjiang River Basin of China over 50 years under a changing environment. Front. Environ. Sci. 2022, 10, 968693. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, C.; Ye, A.; Zheng, T.; Nie, X.; Tu, A.; Zhu, H.; Zhang, S. Impacts of climate and land-use change on blue and green water: A case study of the Upper Ganjiang River Basin, China. Water 2020, 12, 2661. [Google Scholar] [CrossRef]
- Yuan, Z.; Xu, J.; Meng, X.; Wang, Y.; Yan, B.; Hong, X. Impact of climate variability on blue and green water flows in the Erhai Lake Basin of Southwest China. Water 2019, 11, 424. [Google Scholar] [CrossRef]
- Jiang, J.; Lyu, L.; Han, Y.; Sun, C. Effect of climate variability on green and blue water resources in a temperate monsoon watershed, northeastern China. Sustainability 2021, 13, 2193. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, X.; Wang, Z.; Lai, C. Non-point source pollution and its relationship with landscape pattern in Hanjiang River Basin. Water Resour. Prot. 2019, 35, 78–85. [Google Scholar] [CrossRef]
- Li, Y.; Kong, M.; Zang, C.; Deng, J. Spatial and Temporal Evolution and Driving Mechanisms of Water Conservation Amount of Major Ecosystems in Typical Watersheds in Subtropical China. Forests 2023, 14, 93. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gassman, P.W.; Arnold, J.J.; Srinivasan, R.; Reyes, M. The worldwide use of the SWAT Model: Technological drivers, networking impacts, and simulation trends. In Proceedings of the 21st Century Watershed Technology: Improving Water Quality and Environment Conference Proceedings, Guacimo, Costa Rica, 21–24 February 2010; Universidad EARTH: Mercedes, Costa Rica, 2010; p. 1. [Google Scholar]
- Chunn, D.; Faramarzi, M.; Smerdon, B.; Alessi, D. Application of an Integrated SWAT–MODFLOW Model to Evaluate Potential Impacts of Climate Change and Water Withdrawals on Groundwater–Surface Water Interactions in West-Central Alberta. Water 2019, 11, 110. [Google Scholar] [CrossRef]
- Noori, N.; Kalin, L.; Isik, S. Water quality prediction using SWAT-ANN coupled approach. J. Hydrol. 2020, 590, 125220. [Google Scholar] [CrossRef]
- Krysanova, V.; White, M. Advances in water resources assessment with SWAT—An overview. Hydrol. Sci. J. 2015, 60, 771–783. [Google Scholar] [CrossRef]
- Abramovich, F.; Bailey, T.C.; Sapatinas, T. Wavelet analysis and its statistical applications. J. R. Stat. Soc. Ser. D 2000, 49, 1–29. [Google Scholar] [CrossRef]
- Sedgwick, P. Pearson’s correlation coefficient. Bmj 2012, 345, 1263–1278. [Google Scholar] [CrossRef]
- Kumar, S.; Radhakrishnan, N.; Mathew, S. Land use change modelling using a Markov model and remote sensing. Geomat. Nat. Hazards Risk 2014, 5, 145–156. [Google Scholar] [CrossRef]
- Kumar, N.; Tischbein, B.; Kusche, J.; Beg, M.K.; Bogardi, J.J. Impact of land-use change on the water resources of the Upper Kharun Catchment, Chhattisgarh, India. Reg. Environ. Chang. 2017, 17, 2373–2385. [Google Scholar] [CrossRef]
- Veettil, A.V.; Mishra, A.K. Water security assessment using blue and green water footprint concepts. J. Hydrol. 2016, 542, 589–602. [Google Scholar] [CrossRef]
- Zang, C.; Liu, J.; Gerten, D.; Jiang, L. Influence of human activities and climate variability on green and blue water provision in the Heihe River Basin, NW China. J. Water Clim. Chang. 2015, 6, 800–815. [Google Scholar] [CrossRef]
- Jackson, R.B.; Jobbágy, E.G.; Avissar, R.; Roy, S.B.; Barrett, D.J.; Cook, C.W.; Farley, K.A.; Le Maitre, D.C.; McCarl, B.A.; Murray, B.C. Trading water for carbon with biological carbon sequestration. Science 2005, 310, 1944–1947. [Google Scholar] [CrossRef]
- Piao, S.; Friedlingstein, P.; Ciais, P.; de Noblet-Ducoudré, N.; Labat, D.; Zaehle, S. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl. Acad. Sci. USA 2007, 104, 15242–15247. [Google Scholar] [CrossRef]
- Ellison, D.; Futter, M.N.; Bishop, K. On the forest cover–water yield debate: From demand- to supply-side thinking. Glob. Chang. Biol. 2011, 18, 806–820. [Google Scholar] [CrossRef]
- Millán, M.; Estrela, M.J.; Sanz, M.J.; Mantilla, E.; Martín, M.; Pastor, F.; Salvador, R.; Vallejo, R.; Alonso, L.; Gangoiti, G. Climatic feedbacks and desertification: The Mediterranean model. J. Clim. 2005, 18, 684–701. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M.; Hayashi, Y.; Lin, E. Future climate change, the agricultural water cycle, and agricultural production in China. Agric. Ecosyst. Environ. 2003, 95, 203–215. [Google Scholar] [CrossRef]
- Pickett, S.T.; Cadenasso, M.L. Landscape ecology: Spatial heterogeneity in ecological systems. Science 1995, 269, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.Q.; Zhang, J.Y.; Xuan, Y.Q.; Liu, J.F.; Jin, J.L.; Bao, Z.X.; He, R.M.; Liu, C.S.; Liu, Y.L.; Yan, X.L. Simulating the Impact of Climate Change on Runoff in a Typical River Catchment of the Loess Plateau, China. J. Hydrometeorol. 2013, 14, 1553–1561. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.; Konz, M.; Shrestha, A.B.; Bierkens, M.F. Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim. Chang. 2012, 110, 721–736. [Google Scholar] [CrossRef] [PubMed]
Type | Description | Sources |
---|---|---|
Digital Elevation Model (DEM) | 90 m resolution. | Science Data Center of Chinese Academy of Sciences |
Land use data | Every decade from 1980 to 2020 (30 m resolution), obtained through remote sensing interpretation. | United States Geological Survey |
Soil data | Soil types in China. | Harmonized World Soil Database (HWSD) |
Meteorological data | Daily meteorological data of 32 meteorological stations in the Hanjiang River Basin from 1971 to 2020. | National Meteorological Science Data Center of China, Meteorology Bureaus of Guangdong, Fujian and Jiangxi Provinces |
Runoff data | Monthly runoff data of Chaoan Station from 1980 to 2010. | Hanjiang River Basin Administration |
Vegetation index data (NDVI) | Every five years from 1990 to 2020 (30 m resolution). | Resource and Environment Science and Data Center |
Year | Calibration | Verification | ||
---|---|---|---|---|
1980 | 0.96 | 0.95 | 0.92 | 0.92 |
1990 | 0.96 | 0.93 | 0.95 | 0.93 |
2000 | 0.96 | 0.95 | 0.94 | 0.94 |
2010 | 0.95 | 0.95 | 0.94 | 0.92 |
2020 | 0.95 | 0.94 | 0.95 | 0.93 |
Decrement | |||||||
---|---|---|---|---|---|---|---|
… | |||||||
… | |||||||
… | |||||||
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | |
… | |||||||
… | 1 | ||||||
Increment | … |
Area Ratio | 1990 | Variable Quantity | ||||||
---|---|---|---|---|---|---|---|---|
CL 1 | FL 2 | GL 3 | W 4 | RL 5 | UL 6 | |||
1980 | CL | 19.920% | 0.024% | 0.006% | 0.018% | 0.381% | 0.000% | −0.421% |
FL | 0.005% | 67.649% | 0.007% | 0.004% | 0.016% | 0.003% | 0.002% | |
GL | 0.000% | 0.002% | 9.115% | 0.000% | 0.002% | 0.000% | 0.009% | |
W | 0.002% | 0.001% | 0.000% | 1.418% | 0.001% | 0.000% | 0.017% | |
RL | 0.001% | 0.000% | 0.000% | 0.000% | 1.393% | 0.000% | 0.399% | |
UL | 0.000% | 0.002% | 0.000% | 0.000% | 0.000% | 0.032% | 0.001% | |
Area Ratio | 2000 | Variable Quantity | ||||||
CL | FL | GL | W | RL | UL | |||
1990 | CL | 19.322% | 0.019% | 0.001% | 0.003% | 0.584% | 0.000% | −0.579% |
FL | 0.015% | 67.599% | 0.037% | 0.000% | 0.025% | 0.003% | 0.255% | |
GL | 0.002% | 0.275% | 8.845% | 0.000% | 0.006% | 0.001% | −0.244% | |
W | 0.010% | 0.000% | 0.000% | 1.428% | 0.001% | 0.000% | −0.009% | |
RL | 0.000% | 0.000% | 0.000% | 0.000% | 1.792% | 0.000% | 0.615% | |
UL | 0.000% | 0.003% | 0.001% | 0.000% | 0.000% | 0.031% | −0.001% | |
Area Ratio | 2010 | Variable Quantity | ||||||
CL | FL | GL | W | RL | UL | |||
2000 | CL | 18.831% | 0.003% | 0.000% | 0.057% | 0.458% | 0.000% | −0.494% |
FL | 0.022% | 67.375% | 0.082% | 0.068% | 0.315% | 0.033% | −0.411% | |
GL | 0.002% | 0.025% | 8.755% | 0.021% | 0.081% | 0.000% | −0.045% | |
W | 0.000% | 0.000% | 0.000% | 1.430% | 0.001% | 0.000% | 0.147% | |
RL | 0.000% | 0.000% | 0.000% | 0.002% | 2.405% | 0.000% | 0.853% | |
UL | 0.000% | 0.000% | 0.002% | 0.000% | 0.000% | 0.032% | 0.031% | |
Area Ratio | 2020 | Variable quantity | ||||||
CL | FL | GL | W | RL | UL | |||
2010 | CL | 18.663% | 0.006% | 0.001% | 0.002% | 0.182% | 0.000% | −0.182% |
FL | 0.007% | 67.229% | 0.006% | 0.007% | 0.153% | 0.000% | −0.144% | |
GL | 0.001% | 0.008% | 8.776% | 0.003% | 0.051% | 0.000% | −0.048% | |
W | 0.000% | 0.003% | 0.000% | 1.570% | 0.004% | 0.000% | 0.006% | |
RL | 0.001% | 0.006% | 0.007% | 0.001% | 3.246% | 0.000% | 0.377% | |
UL | 0.000% | 0.000% | 0.000% | 0.000% | 0.003% | 0.062% | −0.003% | |
Area Ratio | 2020 | Variable quantity | ||||||
CL | FL | GL | W | RL | UL | |||
1980 | CL | 18.610% | 0.050% | 0.012% | 0.076% | 1.600% | 0.000% | −1.675% |
FL | 0.044% | 66.887% | 0.133% | 0.081% | 0.499% | 0.038% | −0.297% | |
GL | 0.005% | 0.306% | 8.642% | 0.024% | 0.141% | 0.001% | −0.328% | |
W | 0.013% | 0.003% | 0.001% | 1.400% | 0.005% | 0.000% | 0.161% | |
RL | 0.001% | 0.001% | 0.001% | 0.002% | 1.388% | 0.000% | 2.244% | |
UL | 0.001% | 0.004% | 0.003% | 0.000% | 0.004% | 0.023% | 0.028% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, M.; Li, Y.; Zang, C.; Deng, J. The Impact Mechanism of Climate and Vegetation Changes on the Blue and Green Water Flow in the Main Ecosystems of the Hanjiang River Basin, China. Remote Sens. 2023, 15, 4313. https://doi.org/10.3390/rs15174313
Kong M, Li Y, Zang C, Deng J. The Impact Mechanism of Climate and Vegetation Changes on the Blue and Green Water Flow in the Main Ecosystems of the Hanjiang River Basin, China. Remote Sensing. 2023; 15(17):4313. https://doi.org/10.3390/rs15174313
Chicago/Turabian StyleKong, Ming, Yiting Li, Chuanfu Zang, and Jinglin Deng. 2023. "The Impact Mechanism of Climate and Vegetation Changes on the Blue and Green Water Flow in the Main Ecosystems of the Hanjiang River Basin, China" Remote Sensing 15, no. 17: 4313. https://doi.org/10.3390/rs15174313
APA StyleKong, M., Li, Y., Zang, C., & Deng, J. (2023). The Impact Mechanism of Climate and Vegetation Changes on the Blue and Green Water Flow in the Main Ecosystems of the Hanjiang River Basin, China. Remote Sensing, 15(17), 4313. https://doi.org/10.3390/rs15174313