Delineating Peri-Urban Areas Using Multi-Source Geo-Data: A Neural Network Approach and SHAP Explanation
Abstract
:1. Introduction
2. Literature Review
2.1. Peri-Urban Identification
2.2. Neural Network in Peri-Urban Study and the SHAP Explanation
3. Methodology
3.1. Study Area and Data Sources
3.2. Deriving Urbanization-Related Indicators
3.3. Classifying Peri-Urbans by a Nerual Network
3.4. SHAP Explanation
4. Results
4.1. Peri-Urban Area Identification
4.2. SHAP Analysis of Individual Factors
5. Discussions
5.1. The Effect of TI
5.2. Inclusion of Other Indicators
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sahana, M.; Ravetz, J.; Patel, P.P.; Dadashpoor, H.; Follmann, A. Where Is the Peri-Urban? A Systematic Review of Peri-Urban Research and Approaches for Its Identification and Demarcation Worldwide. Remote Sens. 2023, 15, 1316. [Google Scholar] [CrossRef]
- Van Vliet, J. Direct and Indirect Loss of Natural Area from Urban Expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Kleemann, J.; Inkoom, J.N.; Thiel, M.; Shankar, S.; Lautenbach, S.; Fürst, C. Peri-Urban Land Use Pattern and Its Relation to Land Use Planning in Ghana, West Africa. Landsc. Urban Plan. 2017, 165, 280–294. [Google Scholar] [CrossRef]
- La Rosa, D.; Geneletti, D.; Spyra, M.; Albert, C. Special Issue on Sustainable Planning Approaches for Urban Peripheries. Landsc. Urban Plan. 2017, 165, 172–176. [Google Scholar] [CrossRef]
- Simon, D. Urban Environments: Issues on the Peri-Urban Fringe. Annu. Rev. Environ. Resour. 2008, 33, 167–185. [Google Scholar] [CrossRef]
- Amirinejad, G.; Donehue, P.; Baker, D. Ambiguity at the Peri-Urban Interface in Australia. Land Use Policy 2018, 78, 472–480. [Google Scholar] [CrossRef]
- Ahani, S.; Dadashpoor, H. A Review of Domains, Approaches, Methods and Indicators in Peri-Urbanization Literature. Habitat Int. 2021, 114, 102387. [Google Scholar] [CrossRef]
- Mortoja, M.G.; Yigitcanlar, T. Why Is Determining Peri-Urban Area Boundaries Critical for Sustainable Urban Development? J. Environ. Plan. Manag. 2023, 66, 67–96. [Google Scholar] [CrossRef]
- Fang, L.; Wang, Y. Multi-Disciplinary Determination of the Rural/Urban Boundary: A Case Study in Xi’an, China. Sustainability 2018, 10, 2632. [Google Scholar] [CrossRef]
- Mortoja, M.G.; Yigitcanlar, T.; Mayere, S. What Is the Most Suitable Methodological Approach to Demarcate Peri-Urban Areas? A Systematic Review of the Literature. Land Use Policy 2020, 95, 104601. [Google Scholar] [CrossRef]
- Saastamoinen, U.; Vikström, S.; Helminen, V.; Lyytimäki, J.; Nurmio, K.; Nyberg, E.; Rantala, S. The Limits of Spatial Data? Sense-Making within the Development and Different Uses of Finnish Urban-Rural Classification. Land Use Policy 2022, 120, 106231. [Google Scholar] [CrossRef]
- Brown, D.L.; Champion, T.; Coombes, M.; Wymer, C. The Migration-Commuting Nexus in Rural England. A Longitudinal Analysis. J. Rural Stud. 2015, 41, 118–128. [Google Scholar] [CrossRef]
- Gonçalves, J.; Gomes, M.C.; Ezequiel, S.; Moreira, F.; Loupa-Ramos, I. Differentiating Peri-Urban Areas: A Transdisciplinary Approach towards a Typology. Land Use Policy 2017, 63, 331–341. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Gao, S.; Gong, L.; Kang, C.; Zhi, Y.; Chi, G.; Shi, L. Social Sensing: A New Approach to Understanding Our Socioeconomic Environments. Ann. Assoc. Am. Geogr. 2015, 105, 512–530. [Google Scholar] [CrossRef]
- Peng, J.; Hu, Y.; Liu, Y.; Ma, J.; Zhao, S. A New Approach for Urban-Rural Fringe Identification: Integrating Impervious Surface Area and Spatial Continuous Wavelet Transform. Landsc. Urban Plan. 2018, 175, 72–79. [Google Scholar] [CrossRef]
- Ding, W.; Chen, H. Urban-Rural Fringe Identification and Spatial Form Transformation during Rapid Urbanization: A Case Study in Wuhan, China. Build. Environ. 2022, 226, 109697. [Google Scholar] [CrossRef]
- Feng, Z.; Peng, J.; Wu, J. Using DMSP/OLS Nighttime Light Data and K-Means Method to Identify Urban-Rural Fringe of Megacities. Habitat Int. 2020, 103, 102227. [Google Scholar] [CrossRef]
- Zhu, J.; Lang, Z.; Yang, J.; Wang, M.; Zheng, J.; Na, J. Integrating Spatial Heterogeneity to Identify the Urban Fringe Area Based on NPP/VIIRS Nighttime Light Data and Dual Spatial Clustering. Remote Sens. 2022, 14, 6126. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Pryor, R.J. Defining the Rural-Urban Fringe. Soc. Forces 1968, 47, 202. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Ahani, S. A Conceptual Typology of the Spatial Territories of the Peripheral Areas of Metropolises. Habitat Int. 2019, 90, 102015. [Google Scholar] [CrossRef]
- Allen, A. Environmental Planning and Management of the Peri-Urban Interface: Perspectives on an Emerging Field. Environ. Urban. 2003, 15, 135–148. [Google Scholar] [CrossRef]
- Vizzari, M.; Sigura, M. Landscape Sequences along the Urban-Rural-Natural Gradient: A Novel Geospatial Approach for Identification and Analysis. Landsc. Urban Plan. 2015, 140, 42–55. [Google Scholar] [CrossRef]
- Ortiz-Báez, P.; Cabrera-Barona, P.; Bogaert, J. Characterizing Landscape Patterns in Urban-Rural Interfaces. J. Urban Manag. 2021, 10, 46–56. [Google Scholar] [CrossRef]
- Yang, J.; Dong, J.; Sun, Y.; Zhu, J.; Huang, Y.; Yang, S. A Constraint-Based Approach for Identifying the Urban-Rural Fringe of Polycentric Cities Using Multi-Sourced Data. Int. J. Geogr. Inf. Sci. 2021, 36, 114–136. [Google Scholar] [CrossRef]
- He, X.; Yuan, X.D.; Zhang, D.H.; Zhang, R.R.; Li, M.; Zhou, C.S. Delineation of Urban Agglomeration Boundary Based on Multisource Big Data Fusion-A Case Study of Guangdong-Hong Kong-Macao Greater Bay Area (GBA). Remote Sens. 2021, 13, 1801. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Q.; Wu, Z. Delineating Urban Fringe Area by Land Cover Information Entropy-An Empirical Study of Guangzhou-Foshan Metropolitan Area, China. ISPRS Int. J. Geo-Inf. 2016, 5, 59. [Google Scholar] [CrossRef]
- Cao, C.; De Luccia, F.J.; Xiong, X.; Wolfe, R.; Weng, F. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1142–1156. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Muller, J.P.; Morley, J.G. Mapping Regional Economic Activity from Night-Time Light Satellite Imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef]
- Sutton, P.C.; Goetz, A.R.; Fildes, S.; Forster, C.; Ghosh, T. Darkness on the Edge of Town: Mapping Urban and Peri-Urban Australia Using Nighttime Satellite Imagery. Prof. Geogr. 2010, 62, 119–133. [Google Scholar] [CrossRef]
- He, C.; Wei, A.; Shi, P.; Zhang, Q.; Zhao, Y. Detecting Land-Use/Land-Cover Change in Rural-Urban Fringe Areas Using Extended Change-Vector Analysis. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 572–585. [Google Scholar] [CrossRef]
- Li, G.; CAO, Y.; He, Z.; He, J.; Cao, Y.; Wang, J.; Fang, X. Understanding the Diversity of Urban–Rural Fringe Development in a Fast Urbanizing Region of China. Remote Sens. 2021, 13, 2373. [Google Scholar] [CrossRef]
- Long, Y.; Han, H.; Tu, Y.; Shu, X. Evaluating the Effectiveness of Urban Growth Boundaries Using Human Mobility and Activity Records. Cities 2015, 46, 76–84. [Google Scholar] [CrossRef]
- Zhong, C.; Arisona, S.M.; Huang, X.; Batty, M.; Schmitt, G. Detecting the Dynamics of Urban Structure through Spatial Network Analysis. Int. J. Geogr. Inf. Sci. 2014, 28, 2178–2199. [Google Scholar] [CrossRef]
- Zhou, Y.; Fang, Z.; Thill, J.C.; Li, Q.; Li, Y. Functionally Critical Locations in an Urban Transportation Network: Identification and Space-Time Analysis Using Taxi Trajectories. Comput. Environ. Urban Syst. 2015, 52, 34–47. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Xiao, Y.; Gao, S. Urban Land Uses and Traffic “Source-Sink Areas”: Evidence from GPS-Enabled Taxi Data in Shanghai. Landsc. Urban Plan. 2012, 106, 73–87. [Google Scholar] [CrossRef]
- Luo, R.; Liu, X.; Wu, Z.; Chen, Y. Delineation of the Urban Fringe Using Multi-Indicators and Deep Neural Network. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7411–7414. [Google Scholar]
- Tsagkis, P.; Bakogiannis, E.; Nikitas, A. Analysing Urban Growth Using Machine Learning and Open Data: An Artificial Neural Network Modelled Case Study of Five Greek Cities. Sustain. Cities Soc. 2023, 89, 104337. [Google Scholar] [CrossRef]
- Wang, J.; Biljecki, F. Unsupervised Machine Learning in Urban Studies: A Systematic Review of Applications. Cities 2022, 129, 103925. [Google Scholar] [CrossRef]
- Tayyebi, A.; Pijanowski, B.C.; Tayyebi, A.H. An Urban Growth Boundary Model Using Neural Networks, GIS and Radial Parameterization: An Application to Tehran, Iran. Landsc. Urban Plan. 2011, 100, 35–44. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Q.; Blaschke, T.; Zhang, Z.; Liu, Y.; Hu, Y.; Wang, M.; Xu, Z.; Wu, J. Integrating Land Development Size, Pattern, and Density to Identify Urban–Rural Fringe in a Metropolitan Region. Landsc. Ecol. 2020, 35, 2045–2059. [Google Scholar] [CrossRef]
- De Veaux, R.D.; Ungar, L.H. Multicollinearity: A Tale of Two Nonparametric Regressions. In Proceedings of the Selecting Models from Data; Cheeseman, P., Oldford, R.W., Eds.; Springer: New York, NY, USA, 1994; pp. 393–402. [Google Scholar]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2021, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable; Independently published. 2022. ISBN 9798411463330. Available online: https://christophm.github.io/interpretable-ml-book (accessed on 17 August 2023).
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Goldstein, A.; Kapelner, A.; Bleich, J.; Pitkin, E. Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation. J. Comput. Graph. Stat. 2015, 24, 44–65. [Google Scholar] [CrossRef]
- Fisher, A.; Rudin, C.; Dominici, F. All Models Are Wrong, but Many Are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res. JMLR 2019, 20, 1–81. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1135–1144. [Google Scholar]
- Shapley, L.S. A Value for N-Person Games; RAND Corporation: Santa Monica, CA, USA, 1952. [Google Scholar]
- Long, Y.; Luo, S.; Liu, X.; Luo, T.; Liu, X. Research on the Dynamic Evolution of the Landscape Pattern in the Urban Fringe Area of Wuhan from 2000 to 2020. ISPRS Int. J. Geo-Inf. 2022, 11, 483. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable Classification with Limited Sample: Transferring a 30-m Resolution Sample Set Collected in 2015 to Mapping 10-m Resolution Global Land Cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef]
- Xu, X.; Annual Night Light Datasets of China. Resources and Environmental Science Data Registration and Publishing System. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=105 (accessed on 9 September 2022).
- Dong, Q.; Qu, S.; Qin, J.; Yi, D.; Liu, Y.; Zhang, J. A Method to Identify Urban Fringe Area Based on the Industry Density of POI. ISPRS Int. J. Geo-Inf. 2022, 11, 128. [Google Scholar] [CrossRef]
- Zeng, Z.; Song, B.; Zheng, X.; Li, H. Changes of Traffic Network and Urban Transformation: A Case Study of Xi’an City, China. Land Use Policy 2019, 88, 104195. [Google Scholar] [CrossRef]
- Chollet, F.; Keras. GitHub Repository 2015. Available online: https://github.com/fchollet/keras (accessed on 20 October 2022).
- Aas, K.; Jullum, M.; Løland, A. Explaining Individual Predictions When Features Are Dependent: More Accurate Approximations to Shapley Values. Artif. Intell. 2021, 298, 103502. [Google Scholar] [CrossRef]
- Sellereite, N.; Jullum, M.; Redelmeier, A.; Lachmann, J. Shapr: Prediction Explanation with Dependence-Aware Shapley Values. 2023. Available online: https://github.com/NorskRegnesentral/shapr (accessed on 17 August 2023).
- Lundberg, S.M.; Nair, B.; Vavilala, M.S.; Horibe, M.; Eisses, M.J.; Adams, T.; Liston, D.E.; Low, D.K.-W.; Newman, S.-F.; Kim, J.; et al. Explainable Machine-Learning Predictions for the Prevention of Hypoxaemia during Surgery. Nat. Biomed. Eng. 2018, 2, 749–760. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, X.; Guo, W.; She, B.; Yue, H.; Li, M. Exploring the Weekly Travel Patterns of Private Vehicles Using Automatic Vehicle Identification Data: A Case Study of Wuhan, China. Sustainability 2019, 11, 6152. [Google Scholar] [CrossRef]
- Tu, W.; Cao, J.; Yue, Y.; Shaw, S.L.; Zhou, M.; Wang, Z.; Chang, X.; Xu, Y.; Li, Q. Coupling Mobile Phone and Social Media Data: A New Approach to Understanding Urban Functions and Diurnal Patterns. Int. J. Geogr. Inf. Sci. 2017, 31, 2331–2358. [Google Scholar] [CrossRef]
- Rose, A.; McKee, J.; Urban, M.; Bright, E.; Sims, K. LandScan Global 2018 (Version 2018); Oak Ridge National Laboratory: Oak Ridge, YN, USA, 2019. [Google Scholar] [CrossRef]
- Dobson, J.; Bright, E.; Coleman, P.; Durfee, R.; Worley, B. LandScan: A Global Population Database for Estimating Populations at Risk. Photogramm. Eng. Remote Sens. 2000, 66, 849–857. [Google Scholar]
Features | Datasets | Indicators | Description and Sources |
---|---|---|---|
Spatial features | LULC images | BLD (Built-up land density) SHDI (Shannon diversity index) | 10-m resolution global land cover (GLC10) http://data.ess.tsinghua.edu.cn/ [53], accessed on 9 November 2022. |
Road network | RD (Road network density) | 2018 Wuhan Navigation Road Network Data | |
Socio- economic | Nighttime light | NLI (Nighttime light intensity) NLF (Nighttime light fluctuation) | Annual Night Light Datasets for China based on NPP-VIIRS https://www.resdc.cn/DOI/DOI.aspx?DOIID=105 [54], accessed on 9 September 2022. |
POI | PD (POI overall density) SPD (Service POI density) | Gaode navigation map POI data https://www.amap.com/, accessed on 25 September 2018. | |
Human movement | Taxi trip OD | TI (Taxi trip OD intensity) | Taxi data of 5 days in 2018 |
Identified Areas | BLD | SHDI | RD | NLI | NLF | PD | SPD | TI |
---|---|---|---|---|---|---|---|---|
Urban | 0.674 | 0.322 | 0.729 | 0.535 | 0.114 | 0.473 | 0.468 | 0.147 |
Peri-urban | 0.298 | 0.406 | 0.442 | 0.134 | 0.117 | 0.108 | 0.047 | 0.012 |
Rural | 0.050 | 0.323 | 0.058 | 0.009 | 0.001 | 0.001 | 0.001 | 0.001 |
Study Year | Urban | Peri-Urban | |||
---|---|---|---|---|---|
Terms Used in Corresponding Publications | Area () | Terms Used in Corresponding Publications | Area () | ||
This study | 2018 | Urban area | 445 | Peri-urban area | 2649 |
Ding and Chen (2022) [16] (k = 4 in K-means) | 2020 | “Urban core” (p. 2) | 425 | “Near urban core” and “Near rural area” (p. 2) | 2247 |
Long et al. (2022) [52] | 2020 | “City center district” (p. 1) | 744 | “Urban fringe areas” (p. 1) | 1220 |
Landscape | Jaccard Index Compared to Scenario (f) | ||||
---|---|---|---|---|---|
(a) | (b) | (c) | (d) | (e) | |
Urban | 43.63% | 71.00% | 80.32% | 57.28% | 74.93% |
Peri-urban | 46.85% | 81.73% | 92.45% | 52.42% | 83.06% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Liu, X.; Zhou, Y. Delineating Peri-Urban Areas Using Multi-Source Geo-Data: A Neural Network Approach and SHAP Explanation. Remote Sens. 2023, 15, 4106. https://doi.org/10.3390/rs15164106
Sun X, Liu X, Zhou Y. Delineating Peri-Urban Areas Using Multi-Source Geo-Data: A Neural Network Approach and SHAP Explanation. Remote Sensing. 2023; 15(16):4106. https://doi.org/10.3390/rs15164106
Chicago/Turabian StyleSun, Xiaomeng, Xingjian Liu, and Yang Zhou. 2023. "Delineating Peri-Urban Areas Using Multi-Source Geo-Data: A Neural Network Approach and SHAP Explanation" Remote Sensing 15, no. 16: 4106. https://doi.org/10.3390/rs15164106
APA StyleSun, X., Liu, X., & Zhou, Y. (2023). Delineating Peri-Urban Areas Using Multi-Source Geo-Data: A Neural Network Approach and SHAP Explanation. Remote Sensing, 15(16), 4106. https://doi.org/10.3390/rs15164106