Diurnal Precipitation Features over Complex Terrains along the Yangtze River in China Based on Long-Term TRMM and GPM Radar Products
Abstract
:1. Introduction
2. Data and Methods
2.1. Global Topographical Elevation Data
Topographic Step | Lowlands | North Highlands | South Highlands |
---|---|---|---|
2nd step | A: Sichuan Basin | 1: Daba Mountain | 2: Wu Mountain 1 |
3rd step | B: Lianghu Basin | 3: Dabie Hill | 4: Jiuling Hill 2 |
3rd step | C: Poyanghu Basin | 5: Yellow Hill | 6: Wuyi Hill |
2.2. TRMM and GPM KuRPFs and Their Algorithms
2.3. TRMM and GPM Ku-Band 0.1° Radar Precipitation Retrievals
2.4. Methodology for Diurnal Precipitation Features
2.5. Methodology for Diurnal Amplitude and Phase
3. Diurnal Precipitation Features along the YR
3.1. Amplitude and Phase of PA, PF, and PI Diurnal Variation
3.2. Propagation of PA, PF, and PI along the YR Region
4. Features of Diurnal Precipitation Systems of Different Sizes over Complex Terrains
4.1. Classification of the Scale of Precipitation Systems
4.2. Contribution of Diurnal Precipitation Systems of Different Sizes over Small-Scale Terrain
4.3. Propagation of Different-Sized Precipitation Systems and Their Relationship with Complex Terrains
5. Conclusions
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, A. Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Clim. 2001, 14, 1112–1128. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Zipser, E.J. The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Clim. 2003, 16, 1456–1475. [Google Scholar] [CrossRef] [Green Version]
- Hirose, M.; Nakamura, K. Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM Precipitation Radar. J. Geophys. Res. 2005, 110, D05106. [Google Scholar] [CrossRef]
- Yuan, W.; Yu, R.; Zhang, M.; Lin, W.; Chen, H.; Li, J. Regimes of diurnal variation of summer rainfall over subtropical east Asia. J. Clim. 2012, 25, 3307–3320. [Google Scholar] [CrossRef]
- Chen, G.; Du, Y.; Wen, Z. Seasonal, interannual, and interdecadal variations of the East Asian summer monsoon: A diurnal-cycle perspective. J. Clim. 2021, 34, 4403–4421. [Google Scholar] [CrossRef]
- Che Wan Zanial, W.N.; Malek, M.A.; Md Reba, M.N.; Zaini, N.; Ahmed, A.N.; Sherif, M.; Elshafie, A. Rainfall-runoff modelling based on global climate model and tropical rainfall measuring mission (GCM-TRMM): A case study in Hulu Terengganu catchment, Malaysia. Heliyon 2023, 9, e15740. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Smith, E.A. Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Clim. 2006, 19, 5190–5226. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zipser, E.J. Diurnal cycle of precipitation, cloud, and lightning in the tropics from 9 years of TRMM observations. Geophys. Res. Lett. 2008, 35, L04819. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Zhou, T.; Xiong, A.; Zhu, Y.; Li, J. Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett. 2007, 34, L01704. [Google Scholar] [CrossRef] [Green Version]
- Liu, C. Rainfall contributions from precipitation systems with different sizes, convective intensities and durations over the tropical and subtropical. J. Hydrometeor. 2011, 12, 394–412. [Google Scholar] [CrossRef] [Green Version]
- Biasutti, M.; Yuter, S.E.; Burleyson, C.D.; Sobel, A.H. Very high resolution rainfall patterns measured by TRMM precipitation radar: Seasonal and diurnal cycles. Clim. Dyn. 2012, 39, 239–258. [Google Scholar] [CrossRef]
- Romatschke, U.; Houze, R.A., Jr. Characteristics of precipitation convective systems accounting for the summer rainfall of tropical and subtropical south America. J. Hydrometeor. 2013, 14, 25–46. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50, RG1001. [Google Scholar] [CrossRef]
- Hirose, M.; Takayabu, Y.N.; Hamada, A.; Shige, S.; Yamamoto, M.K. Spatial contrast of geographically induced rainfall observed by TRMM PR. J. Clim. 2017, 30, 4165–4184. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, A.; Huang, D.; Chen, F.; Yang, B.; Zhou, Y.; Fang, D.; Zhang, L.; Wen, L. Diurnal variations of summer precipitation over the region east to Tibetan Plateau. Clim. Dyn. 2018, 51, 4287–4307. [Google Scholar] [CrossRef]
- Sharifi, E.; Eitzinger, J.; Dorigo, W. Performance of the state-of-the-art gridded precipitation products over mountainous terrain: A regional study over Austria. Remote Sens. 2019, 11, 2018. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Chen, G.; Luo, Z.J. Strong coupling in diurnal variations of clouds, radiation, winds, and precipitation during the East Asian summer monsoon. J. Clim. 2023, 36, 1347–1368. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.; Gao, F.; Xiao, X. Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology. J. Geophys. Res. 2012, 117, D20115. [Google Scholar] [CrossRef]
- Song, Y.; Wei, J. Diurnal cycle of summer precipitation over the North China plain and associated land-atmosphere interactions: Evaluation of ERA5 and MERRA-2. Int. J. Climatol. 2021, 41, 6031–6046. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, D.; Xia, R.; Qian, T. Diurnal variations of presummer rainfall over southern China. J. Clim. 2017, 30, 755–773. [Google Scholar] [CrossRef]
- Chen, G.; Sha, W.; Iwasaki, T.; Wen, Z. Diurnal cycle of a heavy rainfall corridor over east Asia. Mon. Wea. Rev. 2017, 145, 3365–3389. [Google Scholar] [CrossRef]
- Jin, X.; Wu, T.; Li, L. The quasi-stationary feature of nocturnal precipitation in the Sichuan Basin and the role of the Tibetan Plateau. Clim. Dyn. 2013, 41, 977–994. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xue, M.; Zhu, K.; Zhou, B. What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan basin, China? The key role of boundary layer low-level jet inertial oscillations. J. Geophys. Res. 2019, 124, 2643–2664. [Google Scholar] [CrossRef]
- Wang, Q.; Xue, M.; Tan, Z. Convective Initiation by Topographically Induced Convergence Forcing over the Dabie Mountains on 24 June 2010. Adv. Atmos. Sci. 2016, 33, 1120–1136. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; Luo, X.; Zhu, K.; Sun, Z.; Fei, J. The controlling role of boundary layer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China. J. Geophys. Res. 2018, 123, 5090–5115. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, Y.; Sun, J.; Li, J. The comparison of statistical features and synoptic circulations between the eastward-propagating and quasi-stationary MCSs during the warm season around the second-step terrain along the middle reaches of the Yangtze River. Sci. China Earth Sci. 2020, 63, 1209–1222. [Google Scholar] [CrossRef]
- Chen, H.; Yu, R.; Li, J.; Yuan, W.; Zhou, T. Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze river valley. J. Clim. 2010, 23, 905–917. [Google Scholar] [CrossRef] [Green Version]
- Bao, X.; Zhang, F.; Sun, J. Diurnal variation of warm-season precipitation east of the Tibetan plateau over China. Mon. Wea. Rev. 2011, 139, 2790–2810. [Google Scholar] [CrossRef]
- Cai, Y.; Lu, X.; Chen, G.; Yang, S. Diurnal cycles of Mei-yu rainfall simulated over eastern China: Sensitivity to cumulus convective parameterization. Atmos. Res. 2018, 213, 236–251. [Google Scholar] [CrossRef]
- Levizzani, V.; Cattani, E. Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate. Remote Sens. 2019, 11, 2301. [Google Scholar] [CrossRef] [Green Version]
- Costache, R.; Bao Pham, Q.; Corodescu-Roșca, E.; Cîmpianu, C.; Hong, H.; Thi Thuy Linh, N.; Ming Fai, C.; Najah Ahmed, A.; Vojtek, M.; Muhammed Pandhiani, S.; et al. Using GIS, Remote Sensing, and Machine Learning to Highlight the Correlation between the Land-Use/Land-Cover Changes and Flash-Flood Potential. Remote Sens. 2020, 12, 1422. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Iguchi, T.; Kozu, T.; Kwiatkowski, J.; Meneghini, R.; Awaka, J.; Okamoto, K. Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Jpn. 2009, 87A, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Seto, S.; Iguchi, T.; Oki, T. The basic performance of a precipitation retrieval algorithm for the global precipitation measurement mission’s single/dual-frequency radar measurements. IEEE Trans. Geosci. Remote Sens. 2013, 51, 5239–5251. [Google Scholar] [CrossRef] [Green Version]
- Kazemzadeh, M.; Hashemi, H.; Jamali, S.; Uvo, C.B.; Berndtsson, R.; Huffman, G.J. Detecting the Greatest Changes in Global Satellite-Based Precipitation Observations. Remote Sens. 2022, 14, 5433. [Google Scholar] [CrossRef]
- Hayden, L.; Liu, C. Differences in the diurnal variation of precipitation estimated by spaceborne radar, passive microwave radiometer, and IMERG. J. Geophys. Res. 2021, 126, e2020JD033020. [Google Scholar] [CrossRef]
- Zhou, T.; Yu, R.; Chen, H.; Dai, A.; Pan, Y. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Clim. 2008, 21, 3997–4010. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Yang, L.; Wang, Q.; Yuan, J.; Wang, Y. Data Assimilation of High-Resolution Satellite Rainfall Product Improves Rainfall Simulation Associated with Landfalling Tropical Cyclones in the Yangtze River Delta. Remote Sens. 2020, 12, 276. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zeng, M.; Yu, L.; Zhuge, X.; Huang, H. Regional Variability in Microphysical Characteristics of Precipitation Features with Lightning across China: Observations from GPM. Remote Sens. 2022, 14, 6072. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Q.; Duan, Z.; Zhang, J.; Mo, K.; Li, Z.; Tang, G. Multiscale Comparative Evaluation of the GPM IMERG v5 and TRMM 3B42 v7 Precipitation Products from 2015 to 2017 over a Climate Transition Area of China. Remote Sens. 2018, 10, 944. [Google Scholar] [CrossRef] [Green Version]
- Carbone, R.E.; Tuttle, J.D.; Ahijevych, D.A.; Trier, S.B. Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci. 2002, 59, 2033–2056. [Google Scholar] [CrossRef]
- Chen, G.; Sha, W.; Iwasaki, T.; Ueno, K. Diurnal variation of rainfall in the Yangtze River Valley during the spring-summer transition from TRMM measurements. J. Geophys. Res. 2012, 117, D06106. [Google Scholar] [CrossRef]
- Liu, C.; Zipser, E.J.; Cecil, D.J.; Nesbitt, S.W.; Sherwood, S. A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol. 2008, 47, 2712–2728. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Anders, A.M. Very high resolution precipitation climatologies from the Tropical Rainfall Measuring Mission precipitation radar. Geophys. Res. Lett. 2009, 36, L15815. [Google Scholar] [CrossRef]
- Pope, M.; Jakob, C.; Reeder, M.J. Convective systems of the north Australian monsoon. J. Clim. 2008, 21, 5091–5112. [Google Scholar] [CrossRef] [Green Version]
- Hirose, M.; Oki, R.; Shimizu, S.; Kachi, M.; Higashiuwatoko, T. Finescale diurnal rainfall statistics refined from eight years of TRMM PR data. J. Appl. Meteor. Climatol. 2008, 47, 544–561. [Google Scholar] [CrossRef]
- Wang, C.; Chen, G.; Carbone, R. A climatology of warm-season cloud patterns over east Asia based on GMS infrared brightness temperature observations. Mon. Wea. Rev. 2004, 132, 1606–1629. [Google Scholar] [CrossRef]
- Xu, W.; Zipser, E.J. Diurnal Variations of Precipitation, Deep Convection, and Lightning over and East of the Eastern Tibetan Plateau. J. Clim. 2011, 24, 448–465. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, F.; Davis, C.; Sun, J. Diuranl evolution and structure of long-lived mesoscale convective vortices along the Meiyu front over the east China plains. J. Atmos. Sci. 2018, 75, 1005–1025. [Google Scholar] [CrossRef]
- Zhang, G.; Mao, J.; Liu, Y.; Wu, G. PV perspective of impacts on downstream extreme rainfall event of a Tibetan Plateau vortex collaborating with a Southwest China vortex. Adv. Atmos. Sci. 2021, 38, 1835–1851. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Liu, C.; Cao, J.; Lavigne, T. Diurnal Precipitation Features over Complex Terrains along the Yangtze River in China Based on Long-Term TRMM and GPM Radar Products. Remote Sens. 2023, 15, 3451. https://doi.org/10.3390/rs15133451
Zhu S, Liu C, Cao J, Lavigne T. Diurnal Precipitation Features over Complex Terrains along the Yangtze River in China Based on Long-Term TRMM and GPM Radar Products. Remote Sensing. 2023; 15(13):3451. https://doi.org/10.3390/rs15133451
Chicago/Turabian StyleZhu, Suxing, Chuntao Liu, Jie Cao, and Thomas Lavigne. 2023. "Diurnal Precipitation Features over Complex Terrains along the Yangtze River in China Based on Long-Term TRMM and GPM Radar Products" Remote Sensing 15, no. 13: 3451. https://doi.org/10.3390/rs15133451
APA StyleZhu, S., Liu, C., Cao, J., & Lavigne, T. (2023). Diurnal Precipitation Features over Complex Terrains along the Yangtze River in China Based on Long-Term TRMM and GPM Radar Products. Remote Sensing, 15(13), 3451. https://doi.org/10.3390/rs15133451