Energetic Electron Precipitation via Satellite and Balloon Observations: Their Role in Atmospheric Ionization
Abstract
:1. Introduction
2. Balloon and Sattelite EEP Observations
3. Method of Energetic Electron Precipitation Selection Based on Satellite and Balloon Observations
4. Energy Spectra of Precipitating Electrons
5. Ionization Rates in the Atmosphere Based on EEP Observed by MEPED POES during 2003
6. Summary and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyons, L.R.; Thorne, R.M. Equilibrium structure of radiation belt electrons. Geophys. Res. Lett. 1973, 78, 2142–2149. [Google Scholar] [CrossRef]
- Reeves, G.D.; McAdams, K.L.; Friedel, R.H.W.; O’Brien, T.P. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 2003, 30, 1529. [Google Scholar] [CrossRef]
- Millan, R.M.; Thorne, R.M. Review of radiation belt relativistic electron losses. J. Atmos. Sol.-Terr. Phys. 2007, 69, 362–377. [Google Scholar] [CrossRef]
- Ukhorskiy, A.Y.; Anderson, B.J.; Brandt, P.C.; Tsyganenko, N.A. Storm time evolution of the outer radiation belt: Transport and losses. J. Geophys. Res. Space Phys. 2006, 111, A11S03. [Google Scholar] [CrossRef]
- McDowell, J.C. The edge of space: Revisiting the Karman Line. Acta Astronaut. 2018, 151, 668–677. [Google Scholar] [CrossRef]
- Porter, H.S.; Jackman, C.H.; Green, A.E.S. Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air. J. Chem. Phys. 1976, 65, 154–167. [Google Scholar] [CrossRef]
- Solomon, S.; Rusch, D.W.; Gerard, J.C.; Reid, G.C.; Crutzen, P.J. The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II. Odd hydrogen. Planet. Space Sci 1981, 29, 885–893. [Google Scholar] [CrossRef]
- Brasseur, G.P.; Solomon, S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere; Springer Science and Business Media: Berlin, Germany, 2009. [Google Scholar]
- Rozanov, E.; Calisto, M.; Egorova, T.; Peter, T.; Schmutz, W. Influence of the Precipitating Energetic Particles on Atmospheric Chemistry and Climate. Surv. Geophys. 2012, 33, 483–501. [Google Scholar] [CrossRef] [Green Version]
- Sinnhuber, M.; Nieder, H.; Wieters, N. Energetic Particle Precipitation and the Chemistry of the Mesosphere/Lower Thermosphere. Surv. Geophys. 2012, 33, 1281–1334. [Google Scholar] [CrossRef]
- Mironova, I.A.; Aplin, K.L.; Arnold, F.; Bazilevskaya, G.A.; Harrison, R.G.; Krivolutsky, A.A.; Nicoll, K.A.; Rozanov, E.V.; Turunen, E.; Usoskin, I.G. Energetic Particle Influence on the Earth’s Atmosphere. Space Sci. Rev. 2015, 194, 1–96. [Google Scholar] [CrossRef] [Green Version]
- Mironova, I.; Sinnhuber, M.; Bazilevskaya, G.; Clilverd, M.; Funke, B.; Makhmutov, V.; Rozanov, E.; Santee, M.L.; Sukhodolov, T.; Ulich, T. Exceptional middle latitude electron precipitation detected by balloon observations: Implications for atmospheric composition. Atm. Chem. Phys. 2022, 22, 6703–6716. [Google Scholar] [CrossRef]
- Grankin, D.; Mironova, I.; Bazilevskaya, G.; Rozanov, E.; Egorova, T. Atmospheric Response to EEP during Geomagnetic Disturbances. Atmosphere 2023, 14, 273. [Google Scholar] [CrossRef]
- Pettit, J.; Elliott, S.; Randall, C.; Halford, A.; Jaynes, A.; Garcia-Sage, K. Investigation of the drivers and atmospheric impacts of energetic electron precipitation. Front. Astron. Space Sci. 2023, 10, 1162564. [Google Scholar] [CrossRef]
- Mironova, I.A.; Artamonov, A.A.; Bazilevskaya, G.A.; Rozanov, E.V.; Kovaltsov, G.A.; Makhmutov, V.S.; Mishev, A.L.; Karagodin, A.V. Ionization of the Polar Atmosphere by Energetic Electron Precipitation Retrieved From Balloon Measurements. Geophys. Res. Lett. 2019, 46, 990–996. [Google Scholar] [CrossRef] [Green Version]
- Nesse Tyssøy, H.; Sinnhuber, M.; Asikainen, T.; Bender, S.; Clilverd, M.A.; Funke, B.; van de Kamp, M.; Pettit, J.M.; Randall, C.E.; Reddmann, T.; et al. HEPPA III Intercomparison Experiment on Electron Precipitation Impacts: 1. Estimated Ionization Rates During a Geomagnetic Active Period in April 2010. J. Geophys. Res. Space Phys. 2022, 127, e29128. [Google Scholar] [CrossRef]
- Makhmutov, V.S.; Bazilevskaya, G.A.; Stozhkov, Y.I.; Svirzhevskaya, A.K.; Svirzhevsky, N.S. Catalogue of electron precipitation events as observed in the long-duration cosmic ray balloon experiment. J. Atmos. Sol.-Terr. Phys. 2016, 149, 258–276. [Google Scholar] [CrossRef]
- Bazilevskaya, G.A.; Kalinin, M.S.; Krainev, M.B.; Makhmutov, V.S.; Stozhkov, Y.I.; Svirzhevskaya, A.K.; Svirzhevsky, N.S.; Gvozdevsky, B.B. Temporal Characteristics of Energetic Magnetospheric Electron Precipitation as Observed During Long-Term Balloon Observations. J. Geophys. Res. Space Phys. 2020, 125, e28033. [Google Scholar] [CrossRef]
- Millan, R.M.; Lin, R.P.; Smith, D.M.; Lorentzen, K.R.; McCarthy, M.P. X-ray observations of MeV electron precipitation with a balloon-borne germanium spectrometer. Geophys. Res. Lett. 2002, 29, 2194. [Google Scholar] [CrossRef]
- Mironova, I.; Bazilevskaya, G.; Kovaltsov, G.; Artamonov, A.; Rozanov, E.; Mishev, A.; Makhmutov, V.; Karagodin, A.; Golubenko, K. Spectra of high energy electron precipitation and atmospheric ionization rates retrieval from balloon measurements. Sci. Total Environ. 2019, 693, 133242. [Google Scholar] [CrossRef]
- Stozhkov, Y.I.; Svirzhevsky, N.S.; Bazilevskaya, G.A.; Kvashnin, A.N.; Makhmutov, V.S.; Svirzhevskaya, A.K. Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere. Adv. Space Res. 2009, 44, 1124–1137. [Google Scholar] [CrossRef]
- Bazilevskaya, G.A.; Kalinin, M.S.; Krainev, M.B.; Makhmutov, V.S.; Svirzhevskaya, A.K.; Svirzhevsky, N.S.; Stozhkov, Y.I.; Gvozdevsky, B.B. Characteristics of the Energetic Electron Precipitation and Magnetospheric Conditions in 1994. Geomagn. Aeron. 2018, 58, 483–492. [Google Scholar] [CrossRef]
- Clilverd, M.A.; Rodger, C.J.; Moffat-Griffin, T.; Spanswick, E.; Breen, P.; Menk, F.W.; Grew, R.S.; Hayashi, K.; Mann, I.R. Energetic outer radiation belt electron precipitation during recurrent solar activity. J. Geophys. Res. Space Phys. 2010, 115, A08323. [Google Scholar] [CrossRef] [Green Version]
- Rodger, C.J.; Clilverd, M.A.; Green, J.C.; Lam, M.M. Use of POES SEM-2 observations to examine radiation belt dynamics and energetic electron precipitation into the atmosphere. J. Geophys. Res. Space Phys. 2010, 115, A04202. [Google Scholar] [CrossRef] [Green Version]
- Yahnin, A.G.; Yahnina, T.A.; Raita, T.; Manninen, J. Ground pulsation magnetometer observations conjugated with relativistic electron precipitation. J. Geophys. Res. Space Phys. 2017, 122, 9169–9182. [Google Scholar] [CrossRef] [Green Version]
- Bazilevskaya, G.A.; Dyusembekova, A.S.; Kalinin, M.S.; Krainev, M.B.; Makhmutov, V.S.; Svirzhevskaya, A.K.; Svirzhevsky, N.S.; Stozhkov, Y.I.; Tulekov, E.A. Comparison of the Results on Precipitation of High-Energy Electrons in the Stratosphere and on Satellites. Cosm. Res. 2021, 59, 24–29. [Google Scholar] [CrossRef]
- Bazilevskaya, G.A.; Kalinin, M.S.; Krainev, M.B.; Makhmutov, V.S.; Svirzhevskaya, A.K.; Svirzhevsky, N.S.; Stozhkov, Y.I.; Philippov, M.V.; Balabin, Y.V.; Gvozdevsky, B.B. Precipitation of magnetospheric electrons into the Earth’s atmosphere and the electrons of the outer radiation belt. Bull. Russ. Acad. Sci. Phys. 2017, 81, 215–218. [Google Scholar] [CrossRef]
- Fang, X.; Randall, C.E.; Lummerzheim, D.; Wang, W.; Lu, G.; Solomon, S.C.; Frahm, R.A. Parameterization of monoenergetic electron impact ionization. Geophys. Res. Lett. 2010, 37, L22106. [Google Scholar] [CrossRef]
- Mironova, I.; Kovaltsov, G.; Mishev, A.; Artamonov, A. Ionization in the Earth’s Atmosphere Due to Isotropic Energetic Electron Precipitation: Ion Production and Primary Electron Spectra. Remote Sens. 2021, 13, 4161. [Google Scholar] [CrossRef]
- Comess, M.D.; Smith, D.M.; Selesnick, R.S.; Millan, R.M.; Sample, J.G. Duskside relativistic electron precipitation as measured by SAMPEX: A statistical survey. J. Geophys. Res. 2013, 118, 5050–5058. [Google Scholar] [CrossRef]
- Whittaker, I.C.; Gamble, R.J.; Rodger, C.J.; Clilverd, M.A.; Sauvaud, J.A. Determining the spectra of radiation belt electron losses: Fitting DEMETER electron flux observations for typical and storm times. J. Geophys. Res. Space Phys. 2013, 118, 7611–7623. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mironova, I.; Bazilevskaya, G.; Makhmutov, V.; Mironov, A.; Bobrov, N. Energetic Electron Precipitation via Satellite and Balloon Observations: Their Role in Atmospheric Ionization. Remote Sens. 2023, 15, 3291. https://doi.org/10.3390/rs15133291
Mironova I, Bazilevskaya G, Makhmutov V, Mironov A, Bobrov N. Energetic Electron Precipitation via Satellite and Balloon Observations: Their Role in Atmospheric Ionization. Remote Sensing. 2023; 15(13):3291. https://doi.org/10.3390/rs15133291
Chicago/Turabian StyleMironova, Irina, Galina Bazilevskaya, Vladimir Makhmutov, Andrey Mironov, and Nikita Bobrov. 2023. "Energetic Electron Precipitation via Satellite and Balloon Observations: Their Role in Atmospheric Ionization" Remote Sensing 15, no. 13: 3291. https://doi.org/10.3390/rs15133291
APA StyleMironova, I., Bazilevskaya, G., Makhmutov, V., Mironov, A., & Bobrov, N. (2023). Energetic Electron Precipitation via Satellite and Balloon Observations: Their Role in Atmospheric Ionization. Remote Sensing, 15(13), 3291. https://doi.org/10.3390/rs15133291