Two New Methods Based on Implicit Expressions and Corresponding Predictor-Correctors for Gravity Anomaly Downward Continuation and Their Comparison
Abstract
:1. Introduction
2. Methods
2.1. Two Explicit Expressions for Downward Continuation
2.1.1. Numerical Solutions of the Mean-Value Theorem for Gravity Anomalies
2.1.2. Explicit Adams–Bashforth and Explicit Milne Expressions for Downward Continuation
2.2. Two Implicit Expressions and Their Predictor-Corrector Methods for Downward Continuation
2.2.1. Two Implicit Expressions for Gravity Anomalies
2.2.2. Predictor-Corrector Methods for Downward Continuation
3. Examples and Comparison
3.1. Synthetic Models
3.1.1. Downward Continuation with Theoretical Gravity Anomalies and Their Vertical Derivatives at Different Heights from Forward Calculations
3.1.2. Downward Continuation with the Theoretical Gravity Anomaly and Its Vertical Derivative at the Measurement Height of 0 m from Forward Calculations
3.1.3. Downward Continuation with the Theoretical Gravity Anomaly at the Measurement Height of 0 m from the Forward Calculation
3.1.4. Downward Continuation with the Theoretical Gravity Anomaly at the Measurement Height of 0 m from the Forward Calculation with Gaussian White Noise
3.1.5. RMS Errors at Different Depths by Different Downward Continuation Methods
3.2. Real Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moon, C.J.; Whateley, M.K.G.; Evans, A.M. Introduction to Mineral Exploration, 2nd ed.; Blackwell Publishing: Oxford, MA, USA, 2006; pp. 57–59. [Google Scholar]
- Kearey, P.; Brooks, M.; Hill, I. An Introduction to Geophysical Exploration, 3rd ed.; Blackwell: Oxford, MA, USA, 2002; pp. 7, 145. [Google Scholar]
- Mehanee, S.A. A New Scheme for Gravity Data Interpretation by a Faulted 2-D Horizontal Thin Block: Theory, Numerical Examples, and Real Data Investigation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4705514. [Google Scholar] [CrossRef]
- Mehanee, S.A. Simultaneous Joint Inversion of Gravity and Self-Potential Data Measured along Profile: Theory, Numerical Examples, and a Case Study from Mineral Exploration with Cross Validation from Electromagnetic Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4701620. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, W.; Lü, Q.; Yan, J. Gravity Field Imaging by Continued Fraction Downward Continuation: A Case Study of the Nechako Basin (Canada). Acta Geol. Sin.-Engl. Ed. 2021, 95 (Suppl. 1), 102–105. [Google Scholar] [CrossRef]
- Ghamisi, P.; Gloaguen, R.; Atkinson, P.M.; Benediktsson, J.A.; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Bovolo, F.; et al. Multisource and Multitemporal Data Fusion in Remote Sensing: A Comprehensive Review of the State of the Art. IEEE Geosci. Remote Sens. Mag. 2019, 7, 6–39. [Google Scholar] [CrossRef]
- De Oliveira Matias, Í.; Genovez, P.C.; Torres, S.B.; de Araújo Ponte, F.F.; de Oliveira, A.J.; de Miranda, F.P.; Avellino, G.M. Improved Classification Models to Distinguish Natural from Anthropic Oil Slicks in the Gulf of Mexico: Seasonality and Radarsat-2 Beam Mode Effects under a Machine Learning Approach. Remote Sens. 2021, 13, 4568. [Google Scholar] [CrossRef]
- Yan, J.; Lü, Q.; Luo, F.; Cheng, S.; Zhang, K.; Zhang, Y.; Xu, Y.; Zhang, C.; Liu, Z.; Ruan, S.; et al. A Gravity and Magnetic Study of Lithospheric Architecture and Structures of South China with Implications for the Distribution of Plutons and Mineral Systems of the Main Metallogenic Belts. J. Asian Earth Sci. 2021, 221, 104938. [Google Scholar] [CrossRef]
- LaFehr, T.R.; Nabighian, M.N. Fundamentals of Gravity Exploration; Society of Exploration Geophysicists: Houston, TX, USA, 2013; p. 118. [Google Scholar]
- Blakely, R.J. Potential Theory in Gravity and Magnetic Applications; Cambridge University Press: Cambridge, UK, 1996; pp. 319–320. [Google Scholar]
- Luo, Y.; Wu, M. Minimum curvature method for downward continuation of potential field data. Chin. J. Geophys. 2016, 59, 240–251. [Google Scholar]
- Pašteka, R.; Karcol, R.; Kušnirák, D.; Mojzeš, A. REGCONT: A MATLAB Based Program for Stable Downward Continuation of Geophysical Potential Fields Using Tikhonov Regularization. Comput. Geosci. 2012, 49, 278–289. [Google Scholar]
- Xu, S. The Integral-Iteration Method for Continuation of Potential Fields. Chin. J. Geophys. 2006, 49, 1054–1060. [Google Scholar] [CrossRef]
- Zhang, C.; Lü, Q.; Yan, J.; Qi, G. Numerical Solutions of the Mean-Value Theorem: New Methods for Downward Continuation of Potential Fields. Geophys. Res. Lett. 2018, 45, 3461–3470. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, D.; Liu, J. Milne method for downward continuation of gravity field. Chin. J. Geophys. 2017, 60, 4212–4220. [Google Scholar]
- Zhang, C.; Huang, D.; Qin, P.; Wu, G.; Fang, G. Third-Order Adams-Bashforth Formula Method for Downward Continuation of Gravity Field. J. Jilin Univ 2017, 47, 1533–1542. [Google Scholar]
- Dokos, S. Modelling Organs, Tissues, Cells and Devices: Using Matlab and Comsol Multiphysics; Lecture Notes in Bioengineering; Springer: Berlin/Heidelberg, Germany, 2017; pp. 82–97. [Google Scholar]
- Fedi, M.; Florio, G. A Stable Downward Continuation by Using the ISVD Method. Geophys. J. Int. 2002, 151, 146–156. [Google Scholar] [CrossRef]
- Milne, W.E. Numerical integration of ordinary differential equations. Am. Math. Mon. 1926, 33, 455–460. [Google Scholar] [CrossRef]
- Milne, W.E.; Reynolds, R.R. Fifth-Order Methods for the Numerical Solution of Ordinary Differential Equations. J. ACM 1962, 9, 64–70. [Google Scholar] [CrossRef]
- Hairer, E.; Nørsett, S.P.; Wanner, G. Solving Ordinary Differential Equations I: Nonstiff Problems; Springer: Berlin/Heidelberg, Germany, 1993; pp. 356–364. [Google Scholar]
- Atkinson, K.E. An Introduction to Numerical Analysis, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1989; pp. 256–258, 384-390. [Google Scholar]
- Stoer, J.; Bulirsch, R. Introduction to Numerical Analysis, 3rd ed.; Springer: New York, NY, USA, 2002; pp. 146–148. [Google Scholar]
- Burden, R.L.; Faires, J.D.; Burden, A.M. Numerical Analysis, 10th ed.; Cengage Learing: Boston, MA, USA, 2016; pp. 313–316. [Google Scholar]
- Li, X.; Chouteau, M. Three-Dimensional Gravity Modeling in All Space. Surv. Geophys. 1998, 19, 339–368. [Google Scholar] [CrossRef]
RMS Errors | Section 3.1.1 | Section 3.1.2 | Section 3.1.3 | Section 3.1.4 | |
---|---|---|---|---|---|
Methods | |||||
FFT | 0.42 × 1017 | 0.42 × 1017 | 0.42 × 1017 | 0.19 × 1020 | |
Integral iteration | 0.16 × 10−2 | 0.16 × 10−2 | 0.16 × 10−2 | 0.17 × 10−2 | |
Milne | 0.92 × 10−3 | 0.39 × 10−2 | 0.30 × 10−2 | 0.30 × 10−2 | |
Milne–Simpson predictor-corrector | 0.52 × 10−3 | 0.13 × 10−2 | 0.10 × 10−2 | 0.16 × 10−2 | |
Adams–Bashforth | 0.95 × 10−3 | 0.95 × 10−3 | 0.10 × 10−2 | 0.11 × 10−2 | |
Adams–Bashforth–Moulton predictor-corrector | 0.53 × 10−3 | 0.53 × 10−3 | 0.61 × 10−3 | 0.13 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Qin, P.; Lü, Q.; Zhou, W.; Yan, J. Two New Methods Based on Implicit Expressions and Corresponding Predictor-Correctors for Gravity Anomaly Downward Continuation and Their Comparison. Remote Sens. 2023, 15, 2698. https://doi.org/10.3390/rs15102698
Zhang C, Qin P, Lü Q, Zhou W, Yan J. Two New Methods Based on Implicit Expressions and Corresponding Predictor-Correctors for Gravity Anomaly Downward Continuation and Their Comparison. Remote Sensing. 2023; 15(10):2698. https://doi.org/10.3390/rs15102698
Chicago/Turabian StyleZhang, Chong, Pengbo Qin, Qingtian Lü, Wenna Zhou, and Jiayong Yan. 2023. "Two New Methods Based on Implicit Expressions and Corresponding Predictor-Correctors for Gravity Anomaly Downward Continuation and Their Comparison" Remote Sensing 15, no. 10: 2698. https://doi.org/10.3390/rs15102698
APA StyleZhang, C., Qin, P., Lü, Q., Zhou, W., & Yan, J. (2023). Two New Methods Based on Implicit Expressions and Corresponding Predictor-Correctors for Gravity Anomaly Downward Continuation and Their Comparison. Remote Sensing, 15(10), 2698. https://doi.org/10.3390/rs15102698