Spectral-Swin Transformer with Spatial Feature Extraction Enhancement for Hyperspectral Image Classification
Abstract
:1. Introduction
- (1)
- The transformer performs well at handling sequence data( spectral dimension information), but lacks the use of spatial dimension information.
- (2)
- The multi-head self-attention (MSA) of transformer is adept at resolving the global dependencies of spectral information, but it is usually difficult to capture the relationships for local information.
- (3)
- Existing transformer models usually map the image to linear data to be able to input into the transformer model. Such an operation would destroy the spatial structure of HSI.
- (1)
- Based on the characteristics of HSI data, a spectral dimensional shifted window multi-head self-attention is designed. It enhances the model’s capacity to capture local information and can achieve multi-scale effect by changing the size of the window.
- (2)
- A spatial feature extraction module based on spatial attention mechanism is designed to improve the model’s ability to characterize spatial features.
- (3)
- A spatial position encoding is designed before each transformer encoder to deal with the lack of spatial structure of the data after mapping to linear.
- (4)
- Three publicly accessible HSI datasets are used to test the proposed model, which is compared with advanced deep learning models. The proposed model is extremely competitive.
2. Related Work
2.1. Deep-Learning-Based Methods for HSI Classification
2.2. Vision Transformers for Image Classification
3. Methodology
3.1. Overall Architecture
3.2. Spatial Feature Extraction Module
3.3. Spatial Position Encoding
3.4. Spectral Swin-Transformer Module
4. Experiment
4.1. Dataset
- (1)
- Pavia University:The Reflective Optics System Imaging Spectrometer (ROSIS) sensor acquired the PU dataset in 2001. It comprises 115 spectral bands with wavelengths ranging from 380 to 860 nm. Following the removal of the noise bands, there are now 103 open bands for investigation. The image measures 610 pixels in height and 340 pixels in width. The collection includes 42,776 labelled samples of 9 different land cover types.
- (2)
- Salinas: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor acquired the SA dataset in 1998. The 224 bands in the original image have wavelengths between 400 and 2500 nm. 204 bands are used for evaluating after the water absorption bands have been removed. The data has 512 and 217 pixels of height and width, respectively. There are 16 object classes represented in the dataset’s 54,129 marked samples.
- (3)
- Houston2013: The Hyperspectral Image Analysis Group and the NSF-funded Airborne Laser Mapping Center (NCALM) at the University of Houston in the US provided the Houston 2013 dataset. The 2013 IEEE GRSS Data Fusion Competition used the dataset initially for scientific research. It has 144 spectral bands with wavelengths between 0.38 and 1.05 m. This dataset contains 15 classes and measures 349 × 1905 pixels with a 2.5 m spatial resolution.
4.2. Experimental Setting
- (1)
- Evaluation Indicators: To quantitatively analyse the efficacy of the suggested method and other methods for comparison, four quantitative evaluation indexes are introduced: overall accuracy (OA), average accuracy (AA), kappa coefficient (), and the classification accuracy of each class. A better classification effect is indicated by a higher value for each indicator.
- (2)
- Configuration: All verification experiments for the proposed technique were performed in the PyTorch environment using a desktop computer with an Intel(R) Core(TM) i7-10750H CPU, 16GB of RAM, and an NVIDIA Geforce GTX 1660Ti 6-GB GPU. The learning rate was initially set to and the Adam optimizer was selected as the initial optimizer. The size of each training batch was set to 64. Each dataset received 500 training epochs.
4.3. Parameter Analysis
4.3.1. Influence of Patch Size
4.3.2. Influence of Window Number
4.4. Ablation Experiments
4.5. Classification Results
4.6. Robustness Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gevaert, C.M.; Suomalainen, J.; Tang, J.; Kooistra, L. Generation of spectral–temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 3140–3146. [Google Scholar] [CrossRef]
- Jabir, B.; Falih, N.; Rahmani, K. Accuracy and Efficiency Comparison of Object Detection Open-Source Models. Int. J. Online Biomed. Eng. 2021, 17, 165–184. [Google Scholar] [CrossRef]
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 010901. [Google Scholar] [CrossRef]
- Lone, Z.A.; Pais, A.R. Object detection in hyperspectral images. Digit. Signal Process. 2022, 131, 103752. [Google Scholar] [CrossRef]
- Weber, C.; Aguejdad, R.; Briottet, X.; Avala, J.; Fabre, S.; Demuynck, J.; Zenou, E.; Deville, Y.; Karoui, M.S.; Benhalouche, F.Z.; et al. Hyperspectral imagery for environmental urban planning. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: New York, NY, USA, 2018; pp. 1628–1631. [Google Scholar]
- Li, N.; Lü, J.S.; Altermann, W. Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution. Spectrosc. Spectr. Anal. 2010, 30, 2508–2511. [Google Scholar]
- Saralıoğlu, E.; Görmüş, E.T.; Güngör, O. Mineral exploration with hyperspectral image fusion. In Proceedings of the 2016 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, Turkey, 16–19 May 2016; IEEE: New York, NY, USA, 2016; pp. 1281–1284. [Google Scholar]
- Ren, J.; Wang, R.; Liu, G.; Feng, R.; Wang, Y.; Wu, W. Partitioned relief-F method for dimensionality reduction of hyperspectral images. Remote Sens. 2020, 12, 1104. [Google Scholar] [CrossRef]
- Ke, C. Military object detection using multiple information extracted from hyperspectral imagery. In Proceedings of the 2017 International Conference on Progress in Informatics and Computing (PIC), Nanjing, China, 15–17 December 2017; IEEE: New York, NY, USA, 2017; pp. 124–128. [Google Scholar]
- Cariou, C.; Chehdi, K. A new k-nearest neighbor density-based clustering method and its application to hyperspectral images. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: New York, NY, USA, 2016; pp. 6161–6164. [Google Scholar]
- Ren, J.; Wang, R.; Liu, G.; Wang, Y.; Wu, W. An SVM-based nested sliding window approach for spectral–spatial classification of hyperspectral images. Remote Sens. 2020, 13, 114. [Google Scholar] [CrossRef]
- Yaman, O.; Yetis, H.; Karakose, M. Band Reducing Based SVM Classification Method in Hyperspectral Image Processing. In Proceedings of the 2020 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad, Serbia, 26–27 May 2020; IEEE: New York, NY, USA, 2020; pp. 21–25. [Google Scholar]
- Chen, Y.; Zhao, X.; Lin, Z. Optimizing subspace SVM ensemble for hyperspectral imagery classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 1295–1305. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, L.; Zhou, X.; Ding, L. A novel hierarchical semisupervised SVM for classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1609–1613. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, G.; Li, X.; Wang, B. Cascaded random forest for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 1082–1094. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Navarro, A.; Nicastro, N.; Costa, C.; Pentangelo, A.; Cardarelli, M.; Ortenzi, L.; Pallottino, F.; Cardi, T.; Pane, C. Sorting biotic and abiotic stresses on wild rocket by leaf-image hyperspectral data mining with an artificial intelligence model. Plant Methods 2022, 18, 45. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Li, S.; Kang, X.; Huang, K. Hyperspectral image classification based on KNN sparse representation. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: New York, NY, USA, 2016; pp. 2411–2414. [Google Scholar]
- Guo, Y.; Yin, X.; Zhao, X.; Yang, D.; Bai, Y. Hyperspectral image classification with SVM and guided filter. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 56. [Google Scholar] [CrossRef]
- Wu, H.; Prasad, S. Convolutional recurrent neural networks for hyperspectral data classification. Remote Sens. 2017, 9, 298. [Google Scholar] [CrossRef]
- Luo, H. Shorten spatial-spectral RNN with parallel-GRU for hyperspectral image classification. arXiv, 2018; arXiv:1810.12563. [Google Scholar]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, H. Contextual deep CNN based hyperspectral classification. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: New York, NY, USA, 2016; pp. 3322–3325. [Google Scholar]
- Chen, Y.; Zhu, L.; Ghamisi, P.; Jia, X.; Li, G.; Tang, L. Hyperspectral images classification with Gabor filtering and convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2355–2359. [Google Scholar] [CrossRef]
- Zhao, X.; Tao, R.; Li, W.; Li, H.C.; Du, Q.; Liao, W.; Philips, W. Joint classification of hyperspectral and LiDAR data using hierarchical random walk and deep CNN architecture. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7355–7370. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef]
- He, M.; Li, B.; Chen, H. Multi-scale 3D deep convolutional neural network for hyperspectral image classification. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: New York, NY, USA, 2017; pp. 3904–3908. [Google Scholar]
- Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral data classification through convolutional neural networks. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; IEEE: New York, NY, USA, 2015; pp. 4959–4962. [Google Scholar]
- Wan, S.; Gong, C.; Zhong, P.; Du, B.; Zhang, L.; Yang, J. Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3162–3177. [Google Scholar] [CrossRef]
- Mou, L.; Lu, X.; Li, X.; Zhu, X.X. Nonlocal graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8246–8257. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.; Li, J.; Pla, F. Capsule networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2145–2160. [Google Scholar] [CrossRef]
- Yin, J.; Li, S.; Zhu, H.; Luo, X. Hyperspectral image classification using CapsNet with well-initialized shallow layers. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1095–1099. [Google Scholar] [CrossRef]
- Zhou, F.; Hang, R.; Liu, Q.; Yuan, X. Hyperspectral image classification using spectral-spatial LSTMs. Neurocomputing 2019, 328, 39–47. [Google Scholar] [CrossRef]
- Gao, J.; Gao, X.; Wu, N.; Yang, H. Bi-directional LSTM with multi-scale dense attention mechanism for hyperspectral image classification. Multimed. Tools Appl. 2022, 81, 24003–24020. [Google Scholar] [CrossRef]
- Xu, Y.; Du, B.; Zhang, L.; Zhang, F. A band grouping based LSTM algorithm for hyperspectral image classification. In Computer Vision: Second CCF Chinese Conference, CCCV 2017, Tianjin, China, 11–14 October 2017, Proceedings, Part II; Springer: Berlin/Heidelberg, Germany, 2017; pp. 421–432. [Google Scholar]
- Luo, Y.; Zou, J.; Yao, C.; Zhao, X.; Li, T.; Bai, G. HSI-CNN: A novel convolution neural network for hyperspectral image. In Proceedings of the 2018 International Conference on Audio, Language and Image Processing (ICALIP), Shanghai, China, 16–17 July 2018; IEEE: New York, NY, USA, 2018; pp. 464–469. [Google Scholar]
- Haut, J.M.; Paoletti, M.E.; Plaza, J.; Plaza, A.; Li, J. Hyperspectral image classification using random occlusion data augmentation. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1751–1755. [Google Scholar] [CrossRef]
- Sun, K.; Wang, A.; Sun, X.; Zhang, T. Hyperspectral image classification method based on M-3DCNN-Attention. J. Appl. Remote Sens. 2022, 16, 026507. [Google Scholar] [CrossRef]
- Xu, H.; Yao, W.; Cheng, L.; Li, B. Multiple spectral resolution 3D convolutional neural network for hyperspectral image classification. Remote Sens. 2021, 13, 1248. [Google Scholar] [CrossRef]
- Li, W.; Chen, H.; Liu, Q.; Liu, H.; Wang, Y.; Gui, G. Attention mechanism and depthwise separable convolution aided 3DCNN for hyperspectral remote sensing image classification. Remote Sens. 2022, 14, 2215. [Google Scholar] [CrossRef]
- Sellami, A.; Abbes, A.B.; Barra, V.; Farah, I.R. Fused 3-D spectral-spatial deep neural networks and spectral clustering for hyperspectral image classification. Pattern Recognit. Lett. 2020, 138, 594–600. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv, 2020; arXiv:2010.11929. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv, 2013; arXiv:2103.14030. [Google Scholar]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking hyperspectral image classification with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, G.; Zheng, Y.; Wu, Z. Spectral-spatial feature tokenization transformer for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5522214. [Google Scholar] [CrossRef]
- Yang, X.; Cao, W.; Lu, Y.; Zhou, Y. Hyperspectral image transformer classification networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Mei, S.; Song, C.; Ma, M.; Xu, F. Hyperspectral image classification using group-aware hierarchical transformer. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5539014. [Google Scholar] [CrossRef]
- Xue, Z.; Xu, Q.; Zhang, M. Local transformer with spatial partition restore for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 4307–4325. [Google Scholar] [CrossRef]
- Hu, X.; Yang, W.; Wen, H.; Liu, Y.; Peng, Y. A lightweight 1-D convolution augmented transformer with metric learning for hyperspectral image classification. Sensors 2021, 21, 1751. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Liu, W.; Feng, L.; Gao, W. Improved transformer net for hyperspectral image classification. Remote Sens. 2021, 13, 2216. [Google Scholar] [CrossRef]
- Mei, S.; Li, X.; Liu, X.; Cai, H.; Du, Q. Hyperspectral image classification using attention-based bidirectional long short-term memory network. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [Google Scholar] [CrossRef]
- Zhu, M.; Jiao, L.; Liu, F.; Yang, S.; Wang, J. Residual spectral-spatial attention network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 449–462. [Google Scholar] [CrossRef]
- Song, W.; Li, S.; Fang, L.; Lu, T. Hyperspectral image classification with deep feature fusion network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3173–3184. [Google Scholar] [CrossRef]
- Hang, R.; Li, Z.; Liu, Q.; Ghamisi, P.; Bhattacharyya, S.S. Hyperspectral image classification with attention-aided CNNs. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2281–2293. [Google Scholar] [CrossRef]
- Chakraborty, T.; Trehan, U. Spectralnet: Exploring spatial-spectral waveletcnn for hyperspectral image classification. arXiv, 2021; arXiv:2104.00341. [Google Scholar]
- Gong, H.; Li, Q.; Li, C.; Dai, H.; He, Z.; Wang, W.; Li, H.; Han, F.; Tuniyazi, A.; Mu, T. Multiscale information fusion for hyperspectral image classification based on hybrid 2D-3D CNN. Remote Sens. 2021, 13, 2268. [Google Scholar] [CrossRef]
- Hamida, A.B.; Benoit, A.; Lambert, P.; Amar, C.B. 3-D deep learning approach for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4420–4434. [Google Scholar] [CrossRef]
- Fang, J.; Xie, L.; Wang, X.; Zhang, X.; Liu, W.; Tian, Q. MSG-transformer: Exchanging local spatial information by manipulating messenger tokens. arXiv, 2022; arXiv:2105.15168. [Google Scholar]
- Guo, J.; Han, K.; Wu, H.; Tang, Y.; Chen, X.; Wang, Y.; Xu, C. Cmt: Convolutional neural networks meet vision transformers. arXiv, 2022; arXiv:2103.14030. [Google Scholar]
- Chen, Y.; Dai, X.; Chen, D.; Liu, M.; Dong, X.; Yuan, L.; Liu, Z. Mobile-former: Bridging mobilenet and transformer. arXiv, 2022; arXiv:2108.05895. [Google Scholar]
- Ayas, S.; Tunc-Gormus, E. SpectralSWIN: A spectral-swin transformer network for hyperspectral image classification. Int. J. Remote Sens. 2022, 43, 4025–4044. [Google Scholar] [CrossRef]
Windows Size | PU | SA | HU |
---|---|---|---|
97.05 | 97.56 | 93.24 | |
97.86 | 97.80 | 93.35 | |
98.33 | 96.93 | 93.31 | |
98.37 | 97.70 | 93.58 | |
98.20 | 96.25 | 93.38 | |
98.25 | 96.31 | 93.69 |
Method | Module (%) | Metric (%) | ||||
---|---|---|---|---|---|---|
S-Swin | SPE | SFE | OA(%) | AA(%) | (%) | |
ViT(Baseline) | ✗ | ✗ | ✗ | 84.43 | 78.06 | 78.95 |
ViT | ✗ | ✓ | ✗ | 86.12 | 80.18 | 81.31 |
ViT | ✗ | ✗ | ✓ | 91.64 | 90.43 | 88.97 |
SSWT(Ours) | ✓ | ✗ | ✗ | 92.30 | 89.58 | 89.75 |
SSWT(Ours) | ✓ | ✓ | ✗ | 93.78 | 91.17 | 91.74 |
SSWT(Ours) | ✓ | ✓ | ✓ | 98.37 | 97.25 | 97.84 |
Class | Bi-LSTM | 3D-CNN | RSSAN | DFFN | Vit | SwinT | SF | Hit | SSFTT | SSWT |
---|---|---|---|---|---|---|---|---|---|---|
1 | 91.67 ± 0.83 | 95.16 ± 1.56 | 97.12 ± 0.57 | 96.66 ± 0.81 | 87.96 ± 1.80 | 93.05 ± 5.32 | 89.41 ± 2.23 | 93.72 ± 1.44 | 97.31 ± 1.12 | 98.06 ± 0.24 |
2 | 96.96 ± 1.60 | 98.31 ± 0.96 | 99.46 ± 0.11 | 99.05 ± 0.51 | 96.56 ± 3.00 | 96.98 ± 1.43 | 97.22 ± 0.76 | 98.66 ± 0.48 | 99.37 ± 0.26 | 99.91 ± 0.08 |
3 | 70.65 ± 9.73 | 36.91 ± 6.18 | 85.74 ± 5.05 | 70.37 ± 12.56 | 53.18 ± 19.35 | 29.49 ± 23.08 | 77.28 ± 3.19 | 80.42 ± 7.56 | 87.25 ± 5.43 | 94.59 ± 2.40 |
4 | 92.88 ± 2.78 | 95.52 ± 1.58 | 96.92 ± 1.32 | 94.22 ± 3.16 | 89.76 ± 2.25 | 92.09 ± 1.41 | 90.80 ± 1.92 | 94.74 ± 1.84 | 97.59 ± 1.15 | 97.70 ± 1.05 |
5 | 99.10 ± 0.60 | 99.83 ± 0.34 | 99.86 ± 0.17 | 99.97 ± 0.06 | 100.00 ± 0.00 | 99.16 ± 0.59 | 100.00 ± 0.00 | 99.95 ± 0.04 | 99.95 ± 0.06 | 99.85 ± 0.27 |
6 | 67.03 ± 14.76 | 49.91 ± 12.17 | 97.00 ± 1.09 | 95.07 ± 3.03 | 51.97 ± 7.05 | 88.47 ± 5.03 | 82.13 ± 6.02 | 95.54 ± 2.05 | 97.00 ± 1.60 | 98.37 ± 1.63 |
7 | 82.67 ± 3.31 | 46.74 ± 14.05 | 84.15 ± 5.66 | 74.68 ± 7.86 | 47.59 ± 8.36 | 45.18 ± 31.47 | 52.80 ± 6.23 | 75.17 ± 8.05 | 91.43 ± 3.70 | 91.95 ± 5.61 |
8 | 83.17 ± 3.25 | 89.73 ± 3.00 | 92.49 ± 1.51 | 87.38 ± 4.34 | 78.79 ± 8.88 | 92.76 ± 1.65 | 81.81 ± 4.44 | 85.83 ± 4.19 | 93.81 ± 1.51 | 95.35 ± 5.61 |
9 | 98.94 ± 0.51 | 98.66 ± 0.62 | 98.37 ± 0.96 | 99.57 ± 0.22 | 96.71 ± 1.00 | 76.85 ± 12.09 | 96.32 ± 1.38 | 97.16 ± 1.29 | 99.72 ± 0.20 | 99.48 ± 0.88 |
OA(%) | 89.52 ± 1.91 | 86.63 ± 1.43 | 96.86 ± 0.36 | 94.74 ± 1.40 | 84.43 ± 1.56 | 89.36 ± 3.14 | 90.16 ± 0.89 | 94.52 ± 1.03 | 97.35 ± 0.45 | 98.37 ± 0.24 |
AA(%) | 87.01 ± 1.97 | 78.97 ± 2.05 | 94.57 ± 0.84 | 90.77 ± 2.46 | 78.06 ± 2.56 | 79.34 ± 7.46 | 85.31 ± 1.20 | 91.24 ± 1.94 | 95.94 ± 0.73 | 97.25 ± 0.64 |
85.94 ± 2.63 | 81.79 ± 2.04 | 95.84 ± 0.48 | 93.00 ± 1.87 | 78.95 ± 2.03 | 85.82 ± 4.23 | 86.87 ± 1.21 | 92.74 ± 1.37 | 96.49 ± 0.60 | 97.84 ± 0.32 |
Class | Bi-LSTM | 3D-CNN | RSSAN | DFFN | Vit | SwinT | SF | Hit | SSFTT | SSWT |
---|---|---|---|---|---|---|---|---|---|---|
1 | 79.24 ± 39.63 | 97.09 ± 1.46 | 99.58 ± 0.48 | 97.12 ± 0.89 | 90.19 ± 2.51 | 72.30 ± 1.87 | 95.05 ± 1.49 | 98.69 ± 2.05 | 99.44 ± 0.90 | 99.79 ± 0.43 |
2 | 98.94 ± 0.55 | 99.90 ± 0.08 | 99.36 ± 0.87 | 99.58 ± 0.14 | 98.05 ± 1.17 | 97.24 ± 1.92 | 99.32 ± 0.18 | 99.32 ± 0.35 | 99.80 ± 0.34 | 99.80 ± 0.17 |
3 | 85.20 ± 12.23 | 88.23 ± 4.35 | 97.01 ± 1.63 | 95.01 ± 3.54 | 87.52 ± 1.83 | 89.31 ± 2.96 | 92.89 ± 1.29 | 95.51 ± 2.29 | 98.41 ± 1.04 | 98.48 ± 1.54 |
4 | 97.79 ± 1.21 | 98.22 ± 1.10 | 98.56 ± 0.70 | 96.67 ± 1.39 | 94.11 ± 1.43 | 96.12 ± 1.50 | 94.05 ± 2.02 | 98.82 ± 0.51 | 99.59 ± 0.56 | 98.53 ± 1.23 |
5 | 96.40 ± 1.22 | 93.41 ± 2.41 | 96.06 ± 1.37 | 96.87 ± 1.04 | 82.59 ± 2.93 | 97.68 ± 0.76 | 93.24 ± 1.83 | 96.03 ± 2.17 | 98.28 ± 0.77 | 98.74 ± 0.80 |
6 | 99.46 ± 0.37 | 99.79 ± 0.32 | 99.36 ± 1.00 | 99.84 ± 0.30 | 99.44 ± 0.64 | 98.89 ± 1.29 | 99.68 ± 0.36 | 99.99 ± 0.02 | 99.98 ± 0.02 | 99.96 ± 0.06 |
7 | 98.84 ± 0.36 | 99.47 ± 0.23 | 99.28 ± 0.40 | 99.62 ± 0.28 | 98.05 ± 0.71 | 97.79 ± 0.92 | 98.81 ± 0.47 | 98.88 ± 0.62 | 99.44 ± 0.46 | 99.72 ± 0.42 |
8 | 83.66 ± 3.85 | 82.53 ± 2.36 | 90.93 ± 2.87 | 89.16 ± 1.74 | 82.79 ± 1.93 | 87.64 ± 1.38 | 85.03 ± 2.46 | 88.55 ± 1.73 | 90.08 ± 4.06 | 95.87 ± 1.47 |
9 | 97.84 ± 1.34 | 98.51 ± 1.11 | 99.66 ± 0.26 | 98.88 ± 0.80 | 96.38 ± 0.57 | 99.16 ± 0.63 | 98.05 ± 0.64 | 99.62 ± 0.37 | 99.53 ± 0.24 | 99.92 ± 0.06 |
10 | 81.10 ± 8.62 | 89.40 ± 2.50 | 95.58 ± 2.48 | 95.39 ± 1.01 | 75.44 ± 3.81 | 89.52 ± 3.74 | 91.23 ± 2.28 | 93.74 ± 2.38 | 95.73 ± 2.58 | 97.07 ± 1.88 |
11 | 83.59 ± 6.83 | 73.95 ± 4.65 | 93.37 ± 5.75 | 92.56 ± 5.81 | 70.47 ± 15.29 | 83.99 ± 14.49 | 89.86 ± 4.74 | 91.16 ± 6.19 | 94.66 ± 4.66 | 95.64 ± 4.52 |
12 | 98.84 ± 0.61 | 99.21 ± 0.56 | 99.36 ± 0.79 | 99.97 ± 0.03 | 98.67 ± 1.31 | 95.76 ± 0.75 | 98.45 ± 1.46 | 99.30 ± 0.64 | 99.80 ± 0.28 | 99.78 ± 0.45 |
13 | 94.78 ± 2.72 | 99.66 ± 0.07 | 98.92 ± 0.99 | 99.98 ± 0.04 | 96.28 ± 2.05 | 94.92 ± 6.31 | 98.61 ± 0.92 | 98.99 ± 1.12 | 99.06 ± 1.66 | 99.87 ± 0.18 |
14 | 90.20 ± 2.51 | 97.24 ± 1.05 | 96.63 ± 0.57 | 98.52 ± 0.76 | 96.51 ± 1.38 | 94.47 ± 1.04 | 95.03 ± 2.32 | 97.16 ± 0.77 | 95.61 ± 2.88 | 99.23 ± 0.55 |
15 | 78.87 ± 9.66 | 73.91 ± 2.47 | 86.60 ± 3.27 | 87.97 ± 2.81 | 72.03 ± 5.50 | 86.75 ± 6.26 | 79.87 ± 3.00 | 81.79 ± 3.34 | 81.36 ± 6.09 | 94.10 ± 2.05 |
16 | 90.27 ± 9.62 | 92.36 ± 1.46 | 96.67 ± 1.27 | 95.16 ± 2.32 | 91.57 ± 0.75 | 92.77 ± 3.30 | 95.35 ± 0.99 | 96.79 ± 1.67 | 97.20 ± 1.02 | 98.40 ± 1.08 |
OA(%) | 89.66 ± 3.03 | 90.22 ± 0.70 | 95.16 ± 0.35 | 94.79 ± 0.80 | 87.58 ± 0.37 | 90.70 ± 2.38 | 91.81 ± 0.73 | 93.81 ± 0.56 | 94.58 ± 0.41 | 97.80 ± 0.25 |
AA(%) | 90.94 ± 3.31 | 92.68 ± 0.71 | 96.68 ± 0.49 | 96.39 ± 0.57 | 89.38 ± 0.51 | 90.02 ± 3.99 | 94.03 ± 0.48 | 95.90 ± 0.24 | 96.75 ± 0.26 | 98.43 ± 0.35 |
88.49 ± 3.39 | 89.11 ± 0.77 | 94.61 ± 0.39 | 94.20 ± 0.89 | 86.17 ± 0.41 | 89.63 ± 2.67 | 90.89 ± 0.81 | 93.10 ± 0.62 | 93.97 ± 0.46 | 97.55 ± 0.28 |
Class | Bi-LSTM | 3D-CNN | RSSAN | DFFN | Vit | SwinT | SF | Hit | SSFTT | SSWT |
---|---|---|---|---|---|---|---|---|---|---|
1 | 84.09 ± 4.77 | 89.90 ± 6.62 | 95.05 ± 2.77 | 94.71 ± 5.79 | 90.72 ± 6.21 | 94.56 ± 2.55 | 95.05 ± 5.10 | 93.37 ± 4.54 | 93.96 ± 4.32 | 95.13 ± 4.45 |
2 | 90.60 ± 7.71 | 81.28 ± 6.08 | 98.05 ± 1.19 | 97.75 ± 1.06 | 83.93 ± 9.70 | 93.93 ± 5.83 | 93.53 ± 3.77 | 97.78 ± 0.87 | 98.71 ± 1.11 | 98.77 ± 1.18 |
3 | 75.14 ± 17.70 | 91.81 ± 4.04 | 98.67 ± 0.81 | 99.49 ± 0.74 | 88.01 ± 8.50 | 96.68 ± 1.98 | 97.19 ± 2.01 | 98.64 ± 0.91 | 99.52 ± 0.89 | 99.46 ± 0.67 |
4 | 90.83 ± 3.70 | 91.91 ± 0.35 | 94.06 ± 1.91 | 91.34 ± 0.74 | 85.63 ± 3.35 | 94.42 ± 2.77 | 89.54 ± 1.79 | 95.35 ± 1.99 | 96.65 ± 2.55 | 95.75 ± 1.55 |
5 | 92.86 ± 2.93 | 95.97 ± 1.83 | 98.29 ± 0.77 | 98.44 ± 0.74 | 95.86 ± 1.75 | 97.99 ± 0.74 | 96.97 ± 0.92 | 98.69 ± 0.98 | 99.54 ± 0.49 | 99.93 ± 0.08 |
6 | 52.43 ± 31.32 | 72.69 ± 2.15 | 80.58 ± 6.70 | 86.15 ± 6.72 | 6.93 ± 7.34 | 71.20 ± 14.20 | 63.88 ± 5.20 | 81.49 ± 2.85 | 90.42 ± 6.32 | 92.62 ± 5.67 |
7 | 72.93 ± 9.32 | 84.15 ± 2.50 | 87.09 ± 3.56 | 84.60 ± 3.98 | 64.32 ± 11.11 | 71.84 ± 14.62 | 74.67 ± 4.06 | 81.16 ± 5.29 | 86.22 ± 5.43 | 88.70 ± 4.61 |
8 | 55.74 ± 5.24 | 55.87 ± 6.14 | 78.88 ± 3.64 | 79.10 ± 3.82 | 66.84 ± 6.80 | 73.69 ± 9.90 | 76.31 ± 2.76 | 78.85 ± 2.03 | 82.79 ± 2.81 | 85.08 ± 3.38 |
9 | 73.05 ± 5.75 | 81.90 ± 2.13 | 81.77 ± 4.72 | 84.24 ± 4.75 | 66.24 ± 5.56 | 73.28 ± 2.75 | 72.94 ± 6.60 | 83.62 ± 5.81 | 89.96 ± 4.24 | 87.47 ± 3.31 |
10 | 39.43 ± 20.49 | 48.10 ± 12.51 | 89.76 ± 0.52 | 90.22 ± 5.12 | 63.29 ± 5.92 | 78.56 ± 2.66 | 81.13 ± 5.79 | 86.14 ± 5.11 | 93.60 ± 1.29 | 96.05 ± 3.71 |
11 | 66.55 ± 10.85 | 60.66 ± 2.63 | 82.85 ± 4.35 | 82.46 ± 3.64 | 58.67 ± 3.08 | 76.21 ± 0.37 | 68.80 ± 6.54 | 79.52 ± 4.94 | 86.36 ± 2.82 | 87.55 ± 5.08 |
12 | 67.21 ± 9.90 | 58.29 ± 10.86 | 92.13 ± 2.73 | 93.10 ± 2.00 | 61.69 ± 6.32 | 87.50 ± 3.52 | 85.02 ± 4.18 | 90.96 ± 3.22 | 88.95 ± 5.90 | 97.83 ± 1.12 |
13 | 19.96 ± 14.65 | 59.10 ± 10.82 | 71.21 ± 8.17 | 92.47 ± 1.57 | 40.09 ± 16.86 | 71.60 ± 2.70 | 50.85 ± 9.67 | 79.28 ± 2.86 | 92.33 ± 2.81 | 90.76 ± 3.15 |
14 | 89.93 ± 8.82 | 93.12 ± 3.76 | 92.38 ± 3.91 | 94.74 ± 2.65 | 77.49 ± 4.47 | 89.03 ± 7.12 | 78.28 ± 3.02 | 93.96 ± 2.88 | 96.46 ± 2.24 | 94.55 ± 3.68 |
15 | 90.91 ± 8.78 | 99.39 ± 0.77 | 95.82 ± 2.62 | 98.88 ± 0.88 | 91.48 ± 3.12 | 96.65 ± 1.75 | 95.15 ± 2.84 | 98.47 ± 1.03 | 98.66 ± 1.13 | 98.63 ± 1.56 |
OA(%) | 72.60 ± 3.03 | 76.73 ± 1.69 | 89.76 ± 0.39 | 90.62 ± 0.79 | 72.80 ± 1.54 | 84.78 ± 2.39 | 82.97 ± 0.99 | 89.16 ± 1.03 | 92.47 ± 0.97 | 93.69 ± 1.07 |
AA(%) | 70.78 ± 4.49 | 77.61 ± 1.80 | 89.11 ± 0.61 | 91.18 ± 0.86 | 69.41 ± 0.73 | 84.48 MSA 1.67 | 81.29 ± 1.16 | 89.15 ± 0.88 | 92.94 ± 1.01 | 93.89 ± 1.07 |
70.34 ± 3.29 | 74.84 ± 1.83 | 88.93 ± 0.42 | 89.86 ± 0.85 | 70.58 ± 1.64 | 83.55 MSA 2.58 | 81.58 ± 1.07 | 88.28 ± 1.11 | 91.86 ± 1.05 | 93.18 ± 1.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Ren, J.; Wang, J.; Shi, M. Spectral-Swin Transformer with Spatial Feature Extraction Enhancement for Hyperspectral Image Classification. Remote Sens. 2023, 15, 2696. https://doi.org/10.3390/rs15102696
Peng Y, Ren J, Wang J, Shi M. Spectral-Swin Transformer with Spatial Feature Extraction Enhancement for Hyperspectral Image Classification. Remote Sensing. 2023; 15(10):2696. https://doi.org/10.3390/rs15102696
Chicago/Turabian StylePeng, Yinbin, Jiansi Ren, Jiamei Wang, and Meilin Shi. 2023. "Spectral-Swin Transformer with Spatial Feature Extraction Enhancement for Hyperspectral Image Classification" Remote Sensing 15, no. 10: 2696. https://doi.org/10.3390/rs15102696
APA StylePeng, Y., Ren, J., Wang, J., & Shi, M. (2023). Spectral-Swin Transformer with Spatial Feature Extraction Enhancement for Hyperspectral Image Classification. Remote Sensing, 15(10), 2696. https://doi.org/10.3390/rs15102696