Sentinel-2 and AISA Airborne Hyperspectral Images for Mediterranean Shrubland Mapping in Catalonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Input data
2.3. The Classification Algorithm and Accuracy Assessment
3. Results
4. Discussion
5. Conclusions
- The shrubby formation was identified with an average overall accuracy above 91.86% based on the Sentinel-2 data; the best data set contained all bands + CHM and Random Forest as the classifier.
- AISA images offered 84.49% overall accuracy, the best data set: MNF + the vegetation indices (EVI, GNDVI, MCARI1, OSAVI, SIPI3) combined with the canopy height model and Random Forest classifier.
- Random Forest offered slightly better results than Support Vector Machine classifier; average overall accuracy for the SVM and AISA images (all tested data sets) was 78.23%, and for the RF: 79.85%. In the case of Sentinel-2, the SVM classifier obtained an average overall accuracy of 83.63%, while the RF classifier: 85.32%.
- We recommend the use of indices for characterizing the canopy and condition of the vegetation (EVI), chlorophyll concentration in vegetation (GNDVI), relative abundance of chlorophyll (MCARI1), cover of the vegetation with eliminated soil-induced variations in vegetation indices (OSAVI) and measure of the efficiency of which vegetation can use incident light for photosynthesis (SIPI3).
- Based on the results of the study and the literature review, the act of monitoring shrubby formation is ecologically important for monitoring water and for carbon management, as well as for preventing fires and soil erosion.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carreras, J.; Ferré, A.; Vigo, J. Manual dels Hàbitats de Catalunya; Generalitat de Catalunya, Departament de Territori i Sostenibilitat: Barcelona, Spain, 2015; p. 380. ISBN 978-84-393-9384-9. [Google Scholar]
- Mimeau, L.; Tramblay, Y.; Brocca, L.; Massari, C.; Camici, S.; Finaud-Guyot, P. Modeling the response of soil moisture to climate variability in the Mediterranean region. Hydrol. Earth Syst. Sci. 2021, 25, 653–669. [Google Scholar] [CrossRef]
- Mevy, J.-P.; Biryol, C.; Boiteau-Barral, M.; Miglietta, F. The Optical Response of a Mediterranean Shrubland to Climate Change: Hyperspectral Reflectance Measurements during Spring. Plants 2022, 11, 505. [Google Scholar] [CrossRef] [PubMed]
- Casermeiro, M.A.; Molina, J.A.; de la Cruz Caravaca, M.T.; Hernando Costa, J.; Hernando Massanet, M.I.; Moreno, P.S. Influence of scrubs on runoff and sediment loss in soils of Mediterranean climate. CATENA 2004, 57, 91–107. [Google Scholar] [CrossRef]
- Gratani, L.; Varone, L.; Ricotta, C.; Catoni, R. Mediterranean shrublands carbon sequestration: Environmental and economic benefits. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 1167–1182. [Google Scholar] [CrossRef]
- Farguell, J.; Ubeda, X.; Pacheco, E. Shrub removal effects on runoff and sediment transport in a mediterranean experimental catchment (Vernega River, NE Spain). CATENA 2022, 210, 105882. [Google Scholar] [CrossRef]
- Torre, I.; Jaime-González, C.; Díaz, M. Habitat Suitability for Small Mammals in Mediterranean Landscapes: How and Why Shrubs Matter. Sustainability 2022, 14, 1562. [Google Scholar] [CrossRef]
- Underwood, E.C.; Viers, J.H.; Klausmeyer, K.R.; Cox, R.L.; Shaw, M.R. Threats and biodiversity in the mediterranean biome. Divers. Distrib. 2009, 15, 188–197. [Google Scholar] [CrossRef]
- Calvao, T.; Palmeirim, J.M. Mapping Mediterranean scrub with satellite imagery: Biomass estimation and spectral behaviour. Int. J. Remote Sens. 2004, 25, 3113–3126. [Google Scholar] [CrossRef]
- Calvão, T.; Palmeirim, J.M. A comparative evaluation of spectral vegetation indices for the estimation of biophysical characteristics of Mediterranean semi-deciduous shrub communities. Int. J. Remote Sens. 2011, 32, 2275–2296. [Google Scholar] [CrossRef]
- Zagajewski, B.; Tømmervik, H.; Bjerke, J.W.; Raczko, E.; Bochenek, Z.; Kłos, A.; Jarocińska, A.; Lavender, S.; Ziółkowski, D. Intraspecific Differences in Spectral Reflectance Curves as Indicators of Reduced Vitality in High-Arctic Plants. Remote Sens. 2017, 9, 1289. [Google Scholar] [CrossRef]
- Zagajewski, B.; Kycko, M.; Tømmervik, H.; Bochenek, Z.; Wojtuń, B.; Bjerke, J.W.; Kłos, A. Feasibility of hyperspectral vegetation indices for the detection of chlorophyll concentration in three high Arctic plants: Salix polaris, Bistorta vivipara, and Dryas octopetala. Acta Soc. Bot. Pol. 2018, 87, 3604. [Google Scholar] [CrossRef]
- Kycko, M.; Zagajewski, B.; Zwijacz-Kozica, M.; Cierniewski, J.; Romanowska, E.; Orłowska, K.; Ochtyra, A.; Jarocińska, A. Assessment of Hyperspectral Remote Sensing for Analyzing the Impact of Human Trampling on Alpine Swards. Mt. Res. Dev. 2017, 37, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Kycko, M.; Zagajewski, B.; Lavender, S.; Romanowska, E.; Zwijacz-Kozica, M. The Impact of Tourist Traffic on the Condition and Cell Structures of Alpine Swards. Remote Sens. 2018, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Kycko, M.; Zagajewski, B.; Lavender, S.; Dabija, A. In Situ Hyperspectral Remote Sensing for Monitoring of Alpine Trampled and Recultivated Species. Remote Sens. 2019, 11, 1296. [Google Scholar] [CrossRef] [Green Version]
- Gan, L.; Cao, X.; Chen, X.; He, Q.; Cui, X.; Zhao, C. Mapping Shrub Coverage in Xilin Gol Grassland with Multi-Temporal Sentinel-2 Imagery. Remote Sens. 2022, 14, 3266. [Google Scholar] [CrossRef]
- Waśniewski, A.; Hościło, A.; Zagajewski, B.; Moukétou-Tarazewicz, D. Assessment of Sentinel-2 Satellite Images and Random Forest Classifier for Rainforest Mapping in Gabon. Forests 2020, 11, 941. [Google Scholar] [CrossRef]
- Aranha, J.; Enes, T.; Calvão, A.; Viana, H. Shrub Biomass Estimates in Former Burnt Areas Using Sentinel 2 Images Processing and Classification. Forests 2020, 11, 555. [Google Scholar] [CrossRef]
- Nunes, L.; Pasalodos-Tato, M.; Alberdi, I.; Sequeira, A.C.; Vega, J.A.; Silva, V.; Vieira, P.; Rego, F.C. Bulk Density of Shrub Types and Tree Crowns to Use with Forest Inventories in the Iberian Peninsula. Forests 2022, 13, 555. [Google Scholar] [CrossRef]
- Vega, J.A.; Arellano-Pérez, S.; Álvarez-González, J.G.; Fernández, C.; Jiménez, E.; Fernández-Alonso, J.M.; Vega-Nieva, J.; Briones-Herrera, C.; Alonso-Rego, C.; Fontúrbel, T.; et al. Modelling aboveground biomass and fuel load components at stand level in shrub communities in NW Spain. For. Ecol. Manag. 2022, 505, 119926. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Poblee-Olivares, J.; Rivero, L.; Lopatin, J.; Ceballos-Comisso, A.; Galleguillos, M. Using Sentinel-2 and canopy height models to derive a landscape-level biomass map covering multiple vegetation types. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102236. [Google Scholar] [CrossRef]
- Macintyre, P.; van Niekerk, A.; Mucina, L. Efficacy of multi-season Sentinel-2 imagery for compositional vegetation classification. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101980. [Google Scholar] [CrossRef]
- Sequeira, I.A.H. Landcover and Crop Type Classification with Intra-Annual Times Series of Sentinel-2 and Machine Learning at Central Portugal. Master’s Thesis, Universidade Nova de Lisboa, Lisboa, Portugal, 28 February 2020. [Google Scholar]
- Khodadadzadeh, M.; Li, J.; Prasad, S.; Plaza, A. Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2971–2983. [Google Scholar] [CrossRef]
- Nasrabadi, N.M. Kernel-Based Spectral Matched Signal Detectors for Hyperspectral Target Detection. In Proceedings of the Lecture Notes in Computernat Scional Conference on Pattern Recognition and Machine Intelligence, Kolkata, India, 18–22 December 2007; pp. 67–76. [Google Scholar]
- Kwan, C.; Gribben, D.; Ayhan, B.; Li, J.; Bernabe, S.; Plaza, A. An Accurate Vegetation and Non-Vegetation Differentiation Approach Based on Land Cover Classification. Remote Sens. 2020, 12, 3880. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Z. Object-based Vegetation Mapping in the Kissimmee River Watershed Using HyMap Data and Machine Learning Techniques. Wetlands 2013, 33, 233–244. [Google Scholar] [CrossRef]
- Burai, P.; Deák, B.; Valkó, O.; Tomor, T. Classification of Herbaceous Vegetation Using Airborne Hyperspectral Imagery. Remote Sens. 2015, 7, 2046–2066. [Google Scholar] [CrossRef] [Green Version]
- Raczko, E.; Zagajewski, B. Tree species classification of the UNESCO Man and the Biosphere Karkonoski National Park (Poland) using artificial neural networks and APEX hyperspectral images. Remote Sens. 2018, 10, 1111. [Google Scholar] [CrossRef] [Green Version]
- Kupková, L.; Červená, L.; Suchá, R.; Jakešová, L.; Zagajewski, B.; Březina, S.; Albrechtová, J. Classification of Tundra Vegetation in the Krkonoše Mts. National Park Using APEX, AISA Dual and Sentinel-2A Data. Eur. J. Remote Sens. 2017, 50, 29–46. [Google Scholar] [CrossRef]
- Huete, A. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Pu, R.; Gong, P.; Tian, Y.; Miao, X.; Carruthers, R.I.; Anderson, G.L. Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: A case study of saltcedar in Nevada, USA. Int. J. Remote Sens. 2008, 29, 3987–4011. [Google Scholar] [CrossRef]
- Olsson, A.D.; Van Leeuwen, W.J.D.; Marsh, S.E. Feasibility of Invasive Grass Detection in a Desertscrub Community Using Hyperspectral Field Measurements and Landsat TM Imagery. Remote Sens. 2011, 3, 2283–2304. [Google Scholar] [CrossRef] [Green Version]
- Valderrama-Landeros, L.; Flores-de-Santiago, F.; Kovacs, J.M.; Flores-Verdugo, F. An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme. Environ. Monit. Assess. 2018, 190, 23. [Google Scholar] [CrossRef] [PubMed]
- Kopeć, D.; Sabat-Tomala, A.; Michalska-Hejduk, D.; Jarocińska, A.; Niedzielko, J. Application of airborne hyperspectral data for mapping of invasive alien Spiraea tomentosa L.: A serious threat to peat bog plant communities. Wetl. Ecol. Manag. 2020, 28, 357–373. [Google Scholar] [CrossRef] [Green Version]
- Szostak, M.; Likus-Cieślik, J.; Pietrzykowski, M. PlanetScope Imageries and LiDAR Point Clouds Processing for Automation Land Cover Mapping and Vegetation Assessment of a Reclaimed Sulfur Mine. Remote Sens. 2021, 13, 2717. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Bayle, A.; Carlson, B.Z.; Thierion, V.; Isenmann, M.; Choler, P. Improved Mapping of Mountain Shrublands Using the Sentinel-2 Red-Edge Band. Remote Sens. 2019, 11, 2807. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Merzlyak, M.N. Non-destructive assessment of chlorophyll carotenoid and anthocyanin content in higher plant leaves: Principles and algorithms. Remote Sens. Agric. Environ. 2004, 263, 78–94. [Google Scholar]
- Serra del Montsec Protected Natural Area. Available online: http://www.catalunya.com/serra-del-montsec-protected-natural-area-17-17001-15?language=en (accessed on 2 March 2020).
- Transitional Woodland/Shrub. Available online: https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html/index-clc-324.html (accessed on 2 March 2020).
- García Matallana, R.; Lucas-Borja, M.E.; Gómez-Sánchez, M.E.; Uddin, S.M.M.; Zema, D.A. Post-fire restoration effectiveness using two soil preparation techniques and different shrubs species in pine forests of South-Eastern Spain. Ecol. Eng. 2022, 178, 106579. [Google Scholar] [CrossRef]
- Cierniewski, J.; Kazmierowski, C.; Krolewicz, S.; Piekarczyk, J.; Wrobel, M.; Zagajewski, B. Effects of Different Illumination and Observation Techniques of Cultivated Soils on Their Hyperspectral Bidirectional Measurements Under Field and Laboratory Conditions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2525–2530. [Google Scholar] [CrossRef]
- Cierniewski, J.; Ceglarek, J.; Karnieli, A.; Królewicz, S.; Kaźmierowski, C.; Zagajewski, B. Predicting the diurnal blue-sky albedo of soils using their laboratory reflectance spectra and roughness indices. J. Quant. Spectrosc. Radiat. Transf. 2017, 200, 25–31. [Google Scholar] [CrossRef]
- Land Cover Map of Catalonia. Available online: https://www.creaf.uab.es/mcsc/usa/index.htm (accessed on 2 March 2020).
- Topographical Map of Catalonia 1:5000. Available online: https://www.icgc.cat/en/Downloads/Maps-in-image-format/Topographic-map-1-5-000 (accessed on 2 March 2020).
- Habitats Map of Catalonia 1:50,000. Available online: https://www.ub.edu/geoveg/en/mapes.php#hab (accessed on 2 March 2020).
- Zagajewski, B.; Kluczek, M.; Raczko, E.; Njegovec, A.; Dabija, A.; Kycko, M. Comparison of Random Forest, Support Vector Machines, and Neural Networks for Post-Disaster Forest Species Mapping of the Krkonoše/Karkonosze Transboundary Biosphere Reserve. Remote Sens. 2021, 13, 2581. [Google Scholar] [CrossRef]
- Migas-Mazur, R.; Kycko, M.; Zwijacz-Kozica, T.; Zagajewski, B. Assessment of Sentinel-2 Images, Support Vector Machines and Change Detection Algorithms for Bark Beetle Outbreaks Mapping in the Tatra Mountains. Remote Sens. 2021, 13, 3314. [Google Scholar] [CrossRef]
- Sen2cor v2.8. Available online: https://step.esa.int/main/snap-supported-plugins/sen2cor/sen2cor_v2-8/ (accessed on 3 March 2020).
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Haboudane, D. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semiempirical Indexes to Assess Carotenoids Chlorophyll-a Ratio from Leaf Spectral Reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Knauer, U.; von Rekowski, C.S.; Stecklina, M.; Krokotsch, T.; Pham Minh, T.; Hauffe, V.; Kilias, D.; Ehrhardt, I.; Sagischewski, H.; Chmara, S.; et al. Tree Species Classification Based on Hybrid Ensembles of a Convolutional Neural Network (CNN) and Random Forest Classifiers. Remote Sens. 2019, 11, 2788. [Google Scholar] [CrossRef] [Green Version]
- Macedo, F.L.; Sousa, A.M.O.; Gonçalves, A.C.; Marques da Silva, J.R.; Mesquita, P.A.; Rodrigues, R.A.F. Above-ground biomass estimation for Quercus rotundifolia using vegetation indices derived from high spatial resolution satellite images. Eur. J. Remote Sens. 2018, 51, 932–944. [Google Scholar] [CrossRef] [Green Version]
- Kruse, F.A.; Kim, A.M.; Runyon, S.C.; Carlisle, S.C.; Clasen, C.C.; Esterline, C.H.; Jalobeanu, A.; Metcalf, J.P.; Basgall, P.L.; Trask, D.M.; et al. Multispectral, hyperspectral, and LiDAR remote sensing and geographic information fusion for improved earthquake response. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX; Velez-Reyes, M., Kruse, F.A., Eds.; SPIE Defense + Security: Baltimore, MD, USA, 2014; p. 90880K. [Google Scholar] [CrossRef]
- Sahithi, V.S.; Krishna, I.V.M. Performance evaluation of dimensionality reduction techniques on CHRIS hyperspectral data for surface discrimination. J. Geomat. 2016, 10, 7–11. [Google Scholar]
- Priyadarshini, K.N.; Sivashankari, V.; Shekhar, S.; Balasubramani, K. Comparison and Evaluation of Dimensionality Reduction Techniques for Hyperspectral Data Analysis. Proceedings 2019, 24, 6. [Google Scholar] [CrossRef] [Green Version]
- Martel, E.; Lazcano, R.; López, J.; Madroñal, D.; Salvador, R.; López, S.; Juarez, E.; Guerra, R.; Sanz, C.; Sarmiento, R. Implementation of the Principal Component Analysis onto High-Performance Computer Facilities for Hyperspectral Dimensionality Reduction: Results and Comparisons. Remote Sens. 2018, 10, 864. [Google Scholar] [CrossRef]
- Carvalho Júnior, O.A.; Carvalho, A.P.F.; Meneses, P.R.; Guimarães, R.F. Classificação e eliminação dos ruídos em imagens hiperespectrais pela análise seqüencial da transformação por Fração de Ruído Mínima. Rev. Bras. Geofísica 2002, 20, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Chatziantoniou, A.; Psomiadis, E.; Petropoulos, G.P. Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning. Remote Sens. 2017, 9, 1259. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Su, H.; Shen, J. Hyperspectral Dimensionality Reduction Based on Multiscale Superpixelwise Kernel Principal Component Analysis. Remote Sens. 2019, 11, 1219. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. R Package Version 3.3-13. 2020. Available online: https://rdrr.io/cran/raster/ (accessed on 25 April 2020).
- Bivand, R.; Keitt, T.; Rowlingson, B. Rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R Package Version 1.5-12. 2020. Available online: https://rdrr.io/cran/rgdal/ (accessed on 25 April 2020).
- Liaw, A.; Wiener, M. RandomForest: Classification and Regression by randomForest. R News 2002, 2, 18–22. Available online: https://rdrr.io/cran/randomForest/ (accessed on 25 April 2020).
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group; (Formerly: E1071); R Package Version 1.7-3; TU: Wien, Austria, 2019; Available online: https://rdrr.io/rforge/e1071/ (accessed on 25 April 2020).
- Chutia, D.; Bhattacharyya, D.K.; Sarma, K.K.; Kalita, R.; Sudhakar, S. Hyperspectral Remote Sensing Classifications: A Perspective Survey. Trans. GIS 2016, 20, 463–490. [Google Scholar] [CrossRef]
- Kluczek, M.; Zagajewski, B.; Kycko, M. Airborne HySpex hyperspectral versus multitemporal Sentinel-2 images for mountain plant communities mapping. Remote Sens. 2022, 14, 1209. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Olmo, M.C.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Sicre, C.M.; Dedieu, G. Effect of Training Class Label Noise on Classification Performances for Land Cover Mapping with Satellite Image Time Series. Remote Sens. 2017, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- Sławik, Ł.; Niedzielko, J.; Kania, A.; Piórkowski, H.; Kopeć, D. Multiple Flights or Single Flight Instrument Fusion of Hyperspectral and ALS Data? A Comparison of their Performance for Vegetation Mapping. Remote Sens. 2019, 11, 970. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L. Prediction Games and Arcing Algorithms. Neural Comput. 1999, 11, 1493–1517. [Google Scholar] [CrossRef]
- Sabat-Tomala, A.; Raczko, E.; Zagajewski, B. Mapping Invasive Plant Species with Hyperspectral Data Based on Iterative Accuracy Assessment Techniques. Remote Sens. 2022, 14, 64. [Google Scholar] [CrossRef]
- Dabija, A.; Kluczek, M.; Zagajewski, B.; Raczko, E.; Kycko, M.; Al-Sulttani, A.H.; Tardà, A.; Pineda, L.; Corbera, J. Comparison of Support Vector Machines and Random Forests for Corine Land Cover Mapping. Remote Sens. 2021, 13, 777. [Google Scholar] [CrossRef]
- Marcinkowska–Ochtyra, A.; Zagajewski, B.; Raczko, E.; Ochtyra, A.; Jarocińska, A. Classification of High-Mountain Vegetation Communities within a Diverse Giant Mountains Ecosystem Using Airborne APEX Hyperspectral Imagery. Remote Sens. 2018, 10, 570. [Google Scholar] [CrossRef] [Green Version]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.; Chipman, J. Remote Sensing and Image Interpretation, 7th ed.; Wiley: Hoboken, NJ, USA, 2015; p. 736. ISBN 978-1-118-34328-9. [Google Scholar]
- Sasaki, Y. The truth of the F-measure. Teach. Tutor Mater. 2007, 1, 1–5. [Google Scholar]
- Carbonell-Rivera, J.P.; Torralba, J.; Estornell, J.; Ruiz, L.Á.; Crespo-Peremarch, P. Classification of Mediterranean Shrub Species from UAV Point Clouds. Remote Sens. 2022, 14, 199. [Google Scholar] [CrossRef]
- Venter, Z.S.; Sydenham, M.A.K. Continental-Scale Land Cover Mapping at 10 m Resolution Over Europe (ELC10). Remote Sens. 2021, 13, 2301. [Google Scholar] [CrossRef]
- Li, Z.; Ding, J.; Zhang, H.; Feng, Y. Classifying Individual Shrub Species in UAV Images—A Case Study of the Gobi Region of Northwest China. Remote Sens. 2021, 13, 4995. [Google Scholar] [CrossRef]
- Listiani, I.A. Mediterranean Shrub Classification Using Multi-Temporal Multi-Spectral Satellite Images. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 12 February 2021. [Google Scholar]
- Paz-Kagan, T.; Chang, J.G.; Shoshany, M.; Sternberg, M.; Karnieli, A. Assessment of plant species distribution and diversity along a climatic gradient from Mediterranean woodlands to semi-arid shrublands. GISci. Remote Sens. 2021, 58, 929–953. [Google Scholar] [CrossRef]
- Ayhan, B.; Kwan, C. Tree, Shrub, and Grass Classification Using Only RGB Images. Remote Sens. 2020, 12, 1333. [Google Scholar] [CrossRef] [Green Version]
- Gudmann, A.; Csikós, N.; Szilassi, P.; Mucsi, L. Improvement in Satellite Image-Based Land Cover Classification with Landscape Metrics. Remote Sens. 2020, 12, 3580. [Google Scholar] [CrossRef]
- Hernandez, I.; Benevides, P.; Costa, H.; Caetano, M. Exploring Sentinel-2 for land cover and crop mapping in Portugal. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B3-2, 83–89. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, H.; Li, Z.; Hackman, K.O.; Liu, C.; Andriamiarisoa, R.L.; Ny Aina Nomenjanahary Raherivelo, T.; Li, Y.; Gong, P. Automatic High-Resolution Land Cover Production in Madagascar Using Sentinel-2 Time Series, Tile-Based Image Classification and Google Earth Engine. Remote Sens. 2020, 12, 3663. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, Y.; Lu, D.; Li, G.; Chen, E. Classification of Land Cover, Forest, and Tree Species Classes with ZiYuan-3 Multispectral and Stereo Data. Remote Sens. 2019, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Adams, B.T.; Matthews, S.N. Enhancing Forest and Shrubland Mapping in a Managed Forest Landscape with Landsat–LiDAR Data Fusion. Nat. Areas J. 2018, 38, 402–418. [Google Scholar] [CrossRef]
- Fragoso-Campón, L.; Quirós, E.; Mora, J.; Gutiérrez, J.A.; Durán-Barroso, P. Accuracy Enhancement for Land Cover Classification Using LiDAR and Multitemporal Sentinel 2 Images in a Forested Watershed. Proceedings 2018, 2, 1280. [Google Scholar] [CrossRef] [Green Version]
- Steinhausen, M.J.; Wagner, P.D.; Narasimhan, B.; Waske, B. Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 595–604. [Google Scholar] [CrossRef]
- Rujoiu-Mare, M.-R.; Olariu, B.; Mihai, B.-A.; Nistor, C.; Săvulescu, I. Land cover classification in Romanian Carpathians and Subcarpathians using multi-date Sentinel-2 remote sensing imagery. Eur. J. Remote Sens. 2017, 50, 496–508. [Google Scholar] [CrossRef]
Sentinel-2 | bands | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B8A | B11 | B12 |
central wavelength (nm) | 490 | 560 | 665 | 705 | 740 | 783 | 842 | 865 | 1610 | 2190 | |
AISA | bands | B1 to B256 | |||||||||
spectral range (nm) | 394.04–997.43 | ||||||||||
Additional data | Land Cover Map of Catalonia [46] | ||||||||||
Digital Mapping Cameras DMC-3 Orthophotoimage | |||||||||||
Topographical Map of Catalonia 1:5000 [47] | |||||||||||
Habitats Map of Catalonia 1:50,000 [48] | |||||||||||
Canopy High Model of Catalonia (2018, 2019) |
Class | Number of Pixels–Sentinel-2 | Number of Pixels–AISA | Total Polygons | |||
---|---|---|---|---|---|---|
A | B | A | B | A | B | |
Grasslands | 1750 | 1983 | 44,654 | 49,548 | 80 | 166 |
Shrubby formations | 2579 | 3581 | 63,807 | 89,807 | 120 | 140 |
Soil | 850 | 668 | 21,141 | 12,618 | 52 | 168 |
Deciduous forests | 2120 | 1909 | 52,750 | 48,165 | 41 | 142 |
Evergreen forests | 3368 | 1720 | 83,912 | 42,743 | 52 | 110 |
Total | 10,667 | 9861 | 266,264 | 242,881 | 345 | 726 |
Acronym | Name | Formula | Reference |
---|---|---|---|
EVI | Enhanced Vegetation Index | 2.5 × ((R800 − R670)/(R800 − (6 × R670) – (7.5 × R475) + 1)) | [31] |
GNDVI | Green Normalized Difference Vegetation Index | (R800 − R550)/(R800 + R550) | [52] |
MCARI1 | Modified Chlorophyll Absorption Ratio Index 1 | 1.2 × (2.5 × (R790 − R670) − 1.3 × (R790 − R550)) | [53] |
OSAVI | Optimized Soil Adjusted Vegetation Index | (1 + 0.16) × (R800 − R670)/(R800 + R670 + 0.16) | [54] |
SIPI3 | Structure Intensive Pigment Index 3 | (R800 – R445)/(R800 − R650) | [55] |
S-2 | + CHM | + Indices | + CHM+ Indices | AISA | ||||
---|---|---|---|---|---|---|---|---|
all bands | 10 bands + | + | + | + | 256 bands + | |||
+ | + | + | ||||||
MNF | 4 bands + | + | + | + | 15 bands + | |||
+ | + | + | ||||||
PCA | 3 bands + | + | + | + | 4 bands + | |||
+ | + | + | ||||||
Indices | EVI, GNDVI, MCARI1, OSAVI, SIPI3 | + | EVI, GNDVI, MCARI1, OSAVI, SIPI3 | |||||
+ |
Classifier | Data Set | AISA Data Set | Sentinel 2 Data Set | ||||
---|---|---|---|---|---|---|---|
OA [%] | Kappa | F1 [%] | OA [%] | Kappa | F1 [%] | ||
RF | Image | 79.25 | 0.73 | 78.62 | 87.60 | 0.83 | 85.61 |
MNF | 81.30 | 0.75 | 80.30 | 85.02 | 0.80 | 82.36 | |
PCA | 76.95 | 0.69 | 75.19 | 83.05 | 0.78 | 81.61 | |
INDICES | 76.10 | 0.68 | 75.42 | 78.34 | 0.71 | 77.18 | |
INDICES+CHM | 78.62 | 0.72 | 79.80 | 81.18 | 0.75 | 82.11 | |
Image+INDICES | 79.24 | 0.73 | 78.91 | 89.76 | 0.86 | 88.46 | |
Image+CHM | 79.87 | 0.74 | 79.04 | 90.11 | 0.87 | 87.95 | |
Image+INDICES+CHM | 80.37 | 0.74 | 79.80 | 83.49 | 0.78 | 82.11 | |
MNF+CHM | 81.35 | 0.75 | 79.96 | 85.46 | 0.81 | 83.09 | |
MNF+INDICES | 82.96 | 0.77 | 81.64 | 85.18 | 0.80 | 83.56 | |
MNF+CHM+INDICES | 84.49 | 0.79 | 82.15 | 88.05 | 0.84 | 86.62 | |
PCA+CHM | 78.62 | 0.72 | 76.89 | 85.35 | 0.81 | 83.21 | |
PCA+INDICES | 78.45 | 0.71 | 77.37 | 83.94 | 0.79 | 82.66 | |
PCA+CHM+INDICES | 80.34 | 0.74 | 79.08 | 87.90 | 0.84 | 87.03 | |
SVM | Image | 78.80 | 0.72 | 78.06 | 85.84 | 0.81 | 83.61 |
MNF | 76.06 | 0.68 | 75.42 | 82.84 | 0.77 | 79.30 | |
PCA | 77.97 | 0.71 | 76.64 | 85.00 | 0.80 | 82.83 | |
INDICES | 77.55 | 0.70 | 76.68 | 79.62 | 0.73 | 78.27 | |
INDICES+CHM | 79.29 | 0.72 | 76.13 | 81.56 | 0.76 | 80.18 | |
Image+INDICES | 77.62 | 0.71 | 76.35 | 85.72 | 0.81 | 84.01 | |
Image+CHM | 79.93 | 0.74 | 79.03 | 86.22 | 0.82 | 83.99 | |
Image+INDICES+CHM | 77.54 | 0.71 | 76.13 | 82.72 | 0.77 | 80.18 | |
MNF+CHM | 77.48 | 0.70 | 76.28 | 82.81 | 0.77 | 81.02 | |
MNF+INDICES | 76.77 | 0.69 | 75.41 | 82.47 | 0.77 | 79.96 | |
MNF+CHM+INDICES | 79.96 | 0.73 | 77.54 | 84.04 | 0.79 | 80.56 | |
PCA+CHM | 78.80 | 0.72 | 76.58 | 84.38 | 0.79 | 81.02 | |
PCA+INDICES | 78.41 | 0.71 | 77.12 | 83.03 | 0.77 | 80.56 | |
PCA+CHM+INDICES | 79.01 | 0.72 | 78.08 | 84.58 | 0.80 | 82.78 |
A | Reference Data | |||||
D.f. | Grasslands | C.f. | Shrubs | Soil | ||
Classified data | D.f. | 23,401 | 0 | 944 | 1281 | 8 |
Grasslands | 1 | 18,192 | 1 | 2200 | 235 | |
C.f. | 1646 | 1 | 39,750 | 1078 | 15 | |
Shrubs | 141 | 1719 | 1112 | 20,199 | 288 | |
Soil | 0 | 266 | 0 | 553 | 7112 | |
B | Reference Data | |||||
D.f. | Grasslands | C.f. | Shrubs | Soil | ||
Classified data | D.f. | 14,737 | 27 | 1202 | 1243 | 0 |
Grasslands | 7 | 14,820 | 1 | 2845 | 213 | |
C.f. | 2746 | 14 | 10,511 | 2615 | 8 | |
Shrubs | 479 | 2908 | 1638 | 28,610 | 81 | |
Soil | 0 | 2810 | 0 | 582 | 2441 |
A | Reference Data | |||||
D.f. | Grasslands | C.f. | Shrubs | Soil | ||
Classified data | D.f. | 657 | 0 | 24 | 34 | 0 |
Grasslands | 4 | 696 | 0 | 49 | 6 | |
C.f. | 6 | 0 | 1591 | 4 | 0 | |
Shrubs | 7 | 39 | 36 | 1021 | 2 | |
Soil | 0 | 5 | 0 | 1 | 348 | |
B | Reference Data | |||||
D.f. | Grasslands | C.f. | Shrubs | Soil | ||
Classified data | D.f. | 581 | 0 | 83 | 5 | 0 |
Grasslands | 0 | 639 | 0 | 45 | 45 | |
C.f. | 91 | 1 | 580 | 59 | 0 | |
Shrubs | 2 | 99 | 32 | 1372 | 7 | |
Soil | 1 | 109 | 0 | 6 | 145 |
Author | Data Used (Data Set) | Object of Classification | Classifier | Measures of Accuracy |
---|---|---|---|---|
Our results | AISA; Sentinel-2 | Shrubby formation | RF | F1: 73.70–84.80%; UA: 81.10–89.90%; PA: 75.20–79.90% |
SVM | F1: 73.10–78.20%; UA: 77.20–81.60%; PA: 75.80–79.30% | |||
RF | F1: 84.14–91.67%; UA: 86.01–97.20%; PA: 88.20–93.07% | |||
SVM | F1: 81.50–88.90%; UA: 81.40–89.20%; PA: 87.40–91.20% | |||
[85] | UAV data, ALS, | Mediterranean Shrub Species | Decision Tree Extra Trees Gradient Boosting Random Forest MultiLayer Perceptron | Mean Cross-Validation Score: 78–80% 81–86% 81–87% 81–83 % 78–81% |
[86] | Sentinel-2 Sentinel-1 | Shrubland | RF | UA: 75.01%; PA: 66.8% |
[87] | UAV RGB (original bands, original bands + spectral indices, and original bands + spectral indices + texture indices) + PCA | Shrubby species | RF SVM | OA: 78%; Kappa: 0.65 OA: 76%; Kappa: 0.63 |
[79] | Sentinel-2 | Corine Land Cover; 324: transitional woodland/shrub | SVM RF | Romania: F1: 69–87%; UA: 80–91%; PA: 56–94% Catalonia (Tarragona): F1: 89%; UA: 97%; PA: 82% Poland: F1: 87%; UA: 80%; PA-94% Romania: F1: 32–70% Catalonia (Tarragona): F1: 81% Poland: F1: 41% |
[88] | Sentinel-2 | Mediterranean shrub | RF SVM QDA | OA: 81.9%; Kappa: 0.80 OA: 46%; Kappa: 0.40 OA: 68%; Kappa: 0.60 |
[89] | AISA-FENIX | Shrubland | SVM | OA: 86.1% |
[90] | S-2, RGB | Shrub land (Shrub) | DeepLabV3+ SVM (GLCM) RF (GLCM) | OA: 71.57% OA: 76.70% OA: 73.64% |
[91] | Sentinel-2 Landsat 8 | Corine Land Cover; 324: Transitional woodland scrub | RF | UA: 88.7%; PA: 77.60 % UA: 62%; PA: 46.50 % |
[23] | Sentinel-2 | Shrubland | RF | F1: 67%; UA: 70%; PA: 63% |
[92] | Sentinel-2 | Shrubland | RF | F1: 67%; UA: 70%; PA: 63% |
[18] | Sentinel-2 | Shrubs | Minimum Distance Classifier | UA: 92%; PA: 84% |
[21] | Sentinel-2 + TanDEM-X + Lidar | Shrublands | RF | OA: 83% (+/−15%); Kappa: 0.81; Shrublands Balanced Accuracy: 81.9% |
[22] | Sentinel-2 | Shrublands | SVM NN RF CT | OA: 68 % OA: 62 % OA: 63 % OA: 43 % |
[93] | Sentinel-2 | Shrubland | RF | UA: 79.70%; PA: 79.70%; OA: 89.20%; Kappa: 0.87 |
[94] | Bi-temporal ZiYuan-3 multispectral and stereo images | Scrubs | SVM | UA: 84.4%; PA: 71.7% |
[95] | Landsat OLI Landsat OLI + Lidar | Shrublands | RF | UA: 51%; PA: 86%; OA: 47% UA: 90%; PA: 85%; OA: 77% |
[96] | Sentinel-2, Sentinel-2 + LIDAR | Shrub | RF | UA: 59%; PA: 81% UA: 68%; PA: 84% |
[97] | Sentinel-2 Sentinel-1 | Shrub land | RF | UA: 79.04%; PA: 80.22% UA: 87.21%; PA: 86.58% |
[98] | Sentinel-2 + DEM | Sparsely vegetated areas (includingorchards and shrubs) | ML SVM | UA: 93.96%; PA: 21.24% UA: 57.88%; PA: 45.05% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kycko, M.; Zagajewski, B.; Kluczek, M.; Tardà, A.; Pineda, L.; Palà, V.; Corbera, J. Sentinel-2 and AISA Airborne Hyperspectral Images for Mediterranean Shrubland Mapping in Catalonia. Remote Sens. 2022, 14, 5531. https://doi.org/10.3390/rs14215531
Kycko M, Zagajewski B, Kluczek M, Tardà A, Pineda L, Palà V, Corbera J. Sentinel-2 and AISA Airborne Hyperspectral Images for Mediterranean Shrubland Mapping in Catalonia. Remote Sensing. 2022; 14(21):5531. https://doi.org/10.3390/rs14215531
Chicago/Turabian StyleKycko, Marlena, Bogdan Zagajewski, Marcin Kluczek, Anna Tardà, Lydia Pineda, Vicenç Palà, and Jordi Corbera. 2022. "Sentinel-2 and AISA Airborne Hyperspectral Images for Mediterranean Shrubland Mapping in Catalonia" Remote Sensing 14, no. 21: 5531. https://doi.org/10.3390/rs14215531
APA StyleKycko, M., Zagajewski, B., Kluczek, M., Tardà, A., Pineda, L., Palà, V., & Corbera, J. (2022). Sentinel-2 and AISA Airborne Hyperspectral Images for Mediterranean Shrubland Mapping in Catalonia. Remote Sensing, 14(21), 5531. https://doi.org/10.3390/rs14215531