Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,285)

Search Parameters:
Keywords = Mediterranean ecosystem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 12740 KB  
Article
A Coupled Hydrodynamic–Energy Production Model for Optimal Salinity Gradient Energy Plant Siting in the Strymon River Estuary, Greece
by Konstantinos Zachopoulos, Nikolaos Kokkos, Costas Elmasides, Paraschos Melidis and Georgios Sylaios
Appl. Sci. 2026, 16(3), 1332; https://doi.org/10.3390/app16031332 - 28 Jan 2026
Abstract
The occurrence of salt wedge intrusion is a common phenomenon in microtidal Mediterranean river mouths, particularly during summer, when reduced river discharge occurs. In the Strymon River, upstream saltwater intrusion affects both the hydrodynamic functioning of the system and the estuarine ecosystem. This [...] Read more.
The occurrence of salt wedge intrusion is a common phenomenon in microtidal Mediterranean river mouths, particularly during summer, when reduced river discharge occurs. In the Strymon River, upstream saltwater intrusion affects both the hydrodynamic functioning of the system and the estuarine ecosystem. This study investigates the integrated ecohydrological management of river mouths characterized by salt wedge intrusion, aiming to both limit upstream saltwater penetration and exploit the salinity gradient between seawater and river water for renewable energy production. The study examines the operation of a Salinity Gradient Energy power plant based on Pressure Retarded Osmosis (PRO) technology, with a nominal capacity of 1 MW, located at the Strymon River mouth. A dynamically coupled hydrodynamic and energy production model is developed to assess four operational scenarios with different seawater and freshwater intake locations along the river channel. The results show that, in all scenarios, salt wedge intrusion is restricted to a distance of less than 2000 m from the river mouth, while salt wedge salinity is reduced by up to 35% compared to reference conditions. At the same time, annual energy production exceeds 1.03 GWh in all scenarios, corresponding to the electricity demand of approximately 824 to 1045 households, depending on the operational configuration. Overall, the study demonstrates that salinity gradient energy exploitation can be effectively combined with ecological control of salt wedge intrusion, providing a novel and sustainable framework for the management of Mediterranean estuarine systems. Full article
(This article belongs to the Special Issue Advances in Coastal Environments and Renewable Energy)
Show Figures

Figure 1

26 pages, 4950 KB  
Study Protocol
An Integrated Monitoring Protocol to Study the Effects of Management on the C Sequestration Potential of Mediterranean Pine Ecosystems
by Nikoleta Eleftheriadou, Efstathia D. Mantzari, Natasa Kiorapostolou, Christodoulos I. Sazeides, Georgios Xanthopoulos, Nikos Markos, Gavriil Spyroglou, Evdoxia Bintsi-Frantzi, Alexandros Gouvas, Panayiotis G. Dimitrakopoulos, Mariangela N. Fotelli, Kalliopi Radoglou and Nikolaos M. Fyllas
Methods Protoc. 2026, 9(1), 18; https://doi.org/10.3390/mps9010018 - 26 Jan 2026
Viewed by 401
Abstract
This article describes a field- and laboratory-based framework that can be used to monitor the C balance in Mediterranean pine forest ecosystems under different management practices that determine their structure and function. By jointly monitoring stand structure, gas exchange, litter, and decomposition dynamics, [...] Read more.
This article describes a field- and laboratory-based framework that can be used to monitor the C balance in Mediterranean pine forest ecosystems under different management practices that determine their structure and function. By jointly monitoring stand structure, gas exchange, litter, and decomposition dynamics, this protocol enables the assessment of how management-driven changes regulate carbon uptake, turnover, and losses, thereby affecting carbon sequestration potential. As an example, we suggest the implementation of the protocol at ten (10) permanent monitoring plots across three study areas located in Greece. The first group of plots represents a post-fire chronosequence in pine stands with no management interventions. The second group includes pine stands that exhibit variation in overstory and understory density driven by differences in microclimate and management history. The third group consists of peri-urban pine stands subjected to thinning of varying intensity. The monitoring protocol is implemented across all plots and the collected data can be classified into three analytical domains: (a) demography, encompassing measurements of tree growth and mortality; (b) litter and decomposition dynamics, involving the quantification of litterfall and its seasonality and the estimation of its decomposition rates; and (c) gas exchange, focusing on measurements of leaf photosynthesis and respiration (including relevant leaf functional traits) and monitoring of soil respiration. These three data domains can be used to comparatively consider the effect of forest management on key ecosystem processes and to constrain local-scale vegetation dynamics models. Full article
(This article belongs to the Section Synthetic and Systems Biology)
Show Figures

Figure 1

10 pages, 1363 KB  
Review
A Review on the Trophic Shifts Among Habitat Types of the Red Fox (Vulpes vulpes Linnaeus) and Insights on Its Role as Bioindicator in Mediterranean Landscapes
by Salvatore Rizzo, Rafael Silveira Bueno and Tommaso La Mantia
Diversity 2026, 18(2), 62; https://doi.org/10.3390/d18020062 - 24 Jan 2026
Viewed by 132
Abstract
The red fox (Vulpes vulpes) is a widely distributed and highly adaptive small carnivore known by its generalist diet, which includes small mammals, invertebrates, and fruits. Despite its ecological relevance, how habitat heterogeneity affects its diet across the Mediterranean, a biodiversity [...] Read more.
The red fox (Vulpes vulpes) is a widely distributed and highly adaptive small carnivore known by its generalist diet, which includes small mammals, invertebrates, and fruits. Despite its ecological relevance, how habitat heterogeneity affects its diet across the Mediterranean, a biodiversity hotspot shaped by long-term human disturbance, remains insufficiently synthesized. In this review, we synthesized and analyzed published studies that reported habitat-specific data on the red fox diet in the Mediterranean. Only 12 studies met the selection criteria, and no study directly compared two different habitats. The studied areas covered three dominant habitats: forests, scrublands (garrigue), and agroecosystems, and diet items were grouped in 7 categories: birds, carcasses, fruits, invertebrates, lagomorphs, small mammals, and reptiles. Overall diet composition varied significantly, with invertebrates and fruits being the most frequent diet items. In turn, lagomorphs and reptiles were the least frequent. In turn, diet composition varied little across habitats, indicating that diet variation follows specific local resource abundance regardless of habitat type. Despite the analytical limitations associated with the limited availability of habitat-explicit studies. The results highlight the pronounced dietary plasticity of the red fox and its capacity to integrate resource availability across heterogeneous Mediterranean landscape mosaics. This trophic adaptability and top predator role support various ecosystem functions such as controlling invertebrate and small mammal populations, dispersing seeds, and cycling nutrients, reinforcing the potential of the red fox as functional bioindicator in the Mediterranean. Therefore, sustainable land management, especially in agricultural areas, and restoration efforts for degraded areas should consider the beneficial roles of generalist carnivores like the red fox. Full article
(This article belongs to the Section Biodiversity Loss & Dynamics)
Show Figures

Figure 1

27 pages, 4736 KB  
Article
Ecosystem Services Evaluation of Mediterranean Woodlands: A Case Study of El Pardo, Spain
by Mónica Escudero, Elena Carrió and Sara Mira
Forests 2026, 17(2), 152; https://doi.org/10.3390/f17020152 - 23 Jan 2026
Viewed by 122
Abstract
Mediterranean peri-urban forests play a crucial role in urban sustainability, yet their ecosystem services remain underexplored. This study quantifies and maps six regulating ecosystem services—carbon sequestration, air pollutant removal, surface runoff retention, precipitation interception, soil water regulation, and wildlife refuge—in a representative Mediterranean [...] Read more.
Mediterranean peri-urban forests play a crucial role in urban sustainability, yet their ecosystem services remain underexplored. This study quantifies and maps six regulating ecosystem services—carbon sequestration, air pollutant removal, surface runoff retention, precipitation interception, soil water regulation, and wildlife refuge—in a representative Mediterranean peri-urban forest, Monte de El Pardo (Spain). The analysis integrates cartographic and environmental data, biophysical modelling (i-Tree), and field surveys to provide a spatially explicit assessment. The results reveal that riparian formations and mixed stone pine–broadleaved woodlands provide the highest values across most services, while holm oak forests and dehesas contribute substantially due to their extensive coverage. Total annual carbon sequestration was estimated at 27,917,803 kg C yr−1, equivalent to 102,329,511 kg CO2e yr−1. Hydrological regulation was also significant, with 94.5% of the area showing medium soil permeability and over half the territory presenting complex, multi-layered vegetation structure. Overall, Mediterranean peri-urban forests function as major carbon sinks, hydrological regulators, and biodiversity cores, reinforcing their importance as ecological and climatic stabilisers in metropolitan regions. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

26 pages, 5780 KB  
Article
Analysis of Post-Fire Regeneration Dynamics in Pine Plantations Under Naturalistic Management with In Situ Burnt Logs
by Valentina Lucia Astrid Laface, Giuseppe Bombino, Carmelo Maria Musarella, Andrea Rosario Proto and Giovanni Spampinato
Sustainability 2026, 18(2), 971; https://doi.org/10.3390/su18020971 - 17 Jan 2026
Viewed by 221
Abstract
Wildfires represent one of the most destructive natural disturbances, yet they play a fundamental ecological role in the regeneration and evolution of forest ecosystems. In Mediterranean regions, fire acts as a selective factor shaping plant adaptive strategies and the structure of vegetation mosaics. [...] Read more.
Wildfires represent one of the most destructive natural disturbances, yet they play a fundamental ecological role in the regeneration and evolution of forest ecosystems. In Mediterranean regions, fire acts as a selective factor shaping plant adaptive strategies and the structure of vegetation mosaics. This study analyzes post-fire regeneration dynamics in Pinus radiata and P. pinaster plantations located in Roccaforte del Greco (Metropolitan City of Reggio Calabria, southern Italy), severely affected by the 2021 wildfires. Phytosociological surveys were conducted along permanent transects using the Braun-Blanquet method and analyzed through diversity indices (Shannon, Evenness), Non-Metric Multidimensional Scaling (NMDS), Indicator Species Analysis (IndVal), and hierarchical clustering. The results reveal a clear floristic differentiation among management conditions, with higher species diversity and variability, and a predominance of pioneer therophytes and hemicryptophytes in burned areas. The in situ retention of burned logs enhances structural and microenvironmental heterogeneity, facilitating the establishment of native species and supporting post-fire functional recovery. Overall, this preliminary study, focusing on early successional dynamics, suggests that the in situ retention of burned logs may positively contribute to ecosystem resilience and biodiversity in post-fire Mediterranean pine forests, while also highlighting the need for long-term monitoring to confirm the persistence of these effects. Full article
(This article belongs to the Special Issue Sustainable Management: Plant, Biodiversity and Ecosystem)
Show Figures

Figure 1

19 pages, 3366 KB  
Article
Observed Change in Precipitation and Extreme Precipitation Months in the High Mountain Regions of Bulgaria
by Nina Nikolova, Kalina Radeva, Simeon Matev and Martin Gera
Atmosphere 2026, 17(1), 93; https://doi.org/10.3390/atmos17010093 - 16 Jan 2026
Viewed by 178
Abstract
Precipitation in high mountain areas is of critical importance as these regions are major sources of freshwater, supporting river basins, ecosystems, and downstream communities. Changes in precipitation regimes in these regions can have cascading impacts on water availability, agriculture, hydropower, and biodiversity. The [...] Read more.
Precipitation in high mountain areas is of critical importance as these regions are major sources of freshwater, supporting river basins, ecosystems, and downstream communities. Changes in precipitation regimes in these regions can have cascading impacts on water availability, agriculture, hydropower, and biodiversity. The present study aims to give new information about precipitation variability in high mountain regions of Bulgaria (Musala, Botev Peak, and Cherni Vrah) and to assess the role of large-scale atmospheric circulation patterns for the occurrence of extreme precipitation months. The study period is 1937–2024, and the classification of extreme precipitation months is based on the 10th and 90th percentiles of precipitation distribution. The temporal distribution of extreme precipitation months was analyzed by comparison of two periods (1937–1980 and 1981–2024). The impact of atmospheric circulation was evaluated by correlation between the number of extreme precipitation months and indices for the North Atlantic Oscillation (NAO) and Western Mediterranean Oscillation (WeMO). Results show a statistically significant decrease in winter and spring precipitation at Musala and Cherni Vrah, and a persistent drying tendency at Cherni Vrah across all seasons. The frequency of extremely wet months in winter and autumn has sharply declined since 1981, whereas extremely dry months have become more common, particularly during the cold season. Precipitation erosivity also exhibits station-specific responses, with Musala and Cherni Vrah showing reduced monthly concentration, while Botev Peak retains pronounced warm-season erosive rainfall. Circulation analysis indicates that positive NAOI phases favor dry extremes, while positive WeMOI phases enhance wet extremes. These findings reveal a shift toward drier and more seasonally uneven conditions in Bulgaria’s alpine zone, increasing hydrological risks related to drought, water scarcity, and soil erosion. The identified shifts in precipitation seasonality and intensity offer essential guidance for forecasting hydrological risks and mitigating soil erosion in vulnerable mountain ecosystems. The study underscores the need for adaptive water-resource strategies and enhanced monitoring in high-mountain areas. Full article
Show Figures

Figure 1

40 pages, 2989 KB  
Systematic Review
The Genus Leccinum: Global Advances in Taxonomy, Ecology, Nutritional Value, and Environmental Significance
by Ruben Budau, Simona Ioana Vicas, Mariana Florica Bei, Danut Aurel Dejeu, Lucian Dinca and Danut Chira
J. Fungi 2026, 12(1), 70; https://doi.org/10.3390/jof12010070 - 16 Jan 2026
Viewed by 569
Abstract
Leccinum is an ecologically significant and taxonomically complex genus of ectomycorrhizal fungi widely distributed across boreal, temperate, Mediterranean, and selected tropical regions. Despite its ecological, nutritional, and applied importance, no comprehensive review has previously synthesized global knowledge on this genus. This work provides [...] Read more.
Leccinum is an ecologically significant and taxonomically complex genus of ectomycorrhizal fungi widely distributed across boreal, temperate, Mediterranean, and selected tropical regions. Despite its ecological, nutritional, and applied importance, no comprehensive review has previously synthesized global knowledge on this genus. This work provides the first integrative assessment of Leccinum research, combining a bibliometric analysis of 293 peer-reviewed publications with an in-depth qualitative synthesis of ecological, biochemical, and environmental findings. Bibliometric results show increasing scientific attention since the mid-20th century, with major contributions from Europe, Asia, and North America, and dominant research themes spanning taxonomy, ecology, chemistry, and environmental sciences. The literature review highlights substantial advances in phylogenetic understanding, species diversity, and host specificity. Leccinum forms ectomycorrhizal associations with over 60 woody host genera, underscoring its functional importance in forest ecosystems. Nutritionally, Leccinum species are rich in proteins, carbohydrates, minerals, bioactive polysaccharides, phenolic compounds, and umami-related peptides, with demonstrated antioxidant, immunomodulatory, and antitumor activities. At the same time, the genus exhibits notable bioaccumulation capacity for heavy metals (particularly Hg, Cd, and Pb) and radionuclides, making it both a valuable food source and a sensitive environmental bioindicator. Applications in biotechnology, environmental remediation, forest restoration, and functional food development are emerging but remain insufficiently explored. Identified research gaps include the need for global-scale phylogenomic frameworks, expanded geographic sampling, standardized biochemical analyses, and deeper investigation into physiological mechanisms and applied uses. This review provides the first holistic synthesis of Leccinum, offering an integrated perspective on its taxonomy, ecology, nutritional composition, environmental significance, and practical applications. The findings serve as a foundation for future mycological, ecological, and biotechnological research on this diverse and understudied fungal genus. Full article
(This article belongs to the Special Issue Research Progress on Edible Fungi)
Show Figures

Figure 1

17 pages, 801 KB  
Article
Enhancing a Youth Culture of Sustainability Through Scientific Literacy and Critical Thinking: Insights from the Erasmus+ YOU4BLUE Project
by Maura Calliera, Ettore Capri, Sara Bertuzzi, Alice Tediosi, Cristina Pomilla, Silvia de Juan, Sofia Giakoumi, Argiro Andriopoulou, Daniela Fadda, Andrea Orrù and Gabriele Sacchettini
Sustainability 2026, 18(2), 913; https://doi.org/10.3390/su18020913 - 15 Jan 2026
Viewed by 175
Abstract
The Erasmus+ YOU4BLUE project represents an interdisciplinary educational initiative aimed at fostering a youth culture of sustainability through hands-on learning, scientific literacy, and critical thinking focused on the marine environment. The project aimed to encourage lasting behavioural change and empower young people to [...] Read more.
The Erasmus+ YOU4BLUE project represents an interdisciplinary educational initiative aimed at fostering a youth culture of sustainability through hands-on learning, scientific literacy, and critical thinking focused on the marine environment. The project aimed to encourage lasting behavioural change and empower young people to act. It engaged secondary school students aged 14 to 18 on three Mediterranean islands (Sardinia, Crete, and Mallorca) through a blended Place-Based Education (PBE) model that integrates online learning with local, experiential activities. Forty-nine students completed a pre-assessment questionnaire measuring baseline marine ecosystem knowledge, sustainability-related behaviours, and attitudes toward the sea. Following three international exchanges involving the learning activities, roughly the same cohort of students completed post-activity surveys assessing self-perceived knowledge gains and intercultural interaction. Qualitative data from emotional mapping, field observations, and group reflections complemented the quantitative analysis. The results indicate substantial self-perceived increases in students’ understanding of marine ecosystems (+1.0 to +1.7 points on a 5-point scale), enhanced collaboration with international peers, and strengthened environmental awareness. Across all three sites, students applied their learning by co-designing proposals addressing local coastal challenges, demonstrating emerging civic responsibility and the ability to integrate scientific observations into real-world problem solving. These findings suggest that combining place-based education, citizen science, and participatory methods can effectively support the development of sustainability competences among youth in coastal contexts. This study contributes empirical evidence to the growing literature on education for sustainable development and highlights the value of blended, experiential, and intercultural approaches in promoting environmentally responsible behaviour. Full article
(This article belongs to the Section Sustainable Education and Approaches)
Show Figures

Figure 1

33 pages, 11044 KB  
Article
Monitoring the Sustained Environmental Performances of Nature-Based Solutions in Urban Environments: The Case Study of the UPPER Project (Latina, Italy)
by Riccardo Gasbarrone, Giuseppe Bonifazi and Silvia Serranti
Sustainability 2026, 18(2), 864; https://doi.org/10.3390/su18020864 - 14 Jan 2026
Viewed by 174
Abstract
This follow-up study investigates the long-term environmental sustainability and remediation outcomes of the UPPER (‘Urban Productive Parks for Sustainable Urban Regeneration’-UIA04-252) project in Latina, Italy, focusing on Nature-Based Solutions (NbS) applied to urban green infrastructure. By integrating proximal and satellite-based remote sensing methodologies, [...] Read more.
This follow-up study investigates the long-term environmental sustainability and remediation outcomes of the UPPER (‘Urban Productive Parks for Sustainable Urban Regeneration’-UIA04-252) project in Latina, Italy, focusing on Nature-Based Solutions (NbS) applied to urban green infrastructure. By integrating proximal and satellite-based remote sensing methodologies, the research evaluates persistent improvements in vegetation health, soil moisture dynamics, and overall environmental quality over multiple years. Building upon the initial monitoring framework, this case study incorporates updated data and refined techniques to quantify temporal changes and assess the ecological performance of NbS interventions. In more detail, ground-based data from meteo-climatic, air quality stations and remote satellite data from the Sentinel-2 mission are adopted. Ground-based measurements such as temperature, humidity, radiation, rainfall intensity, PM10 and PM2.5 are carried out to monitor the overall environmental quality. Updated satellite imagery from Sentinel-2 is analyzed using advanced band ratio indices, including the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI) and the Normalized Difference Moisture Index (NDMI). Comparative temporal analysis revealed consistent enhancements in vegetation health, with NDVI values significantly exceeding baseline levels (NDVI 2022–2024: +0.096, p = 0.024), demonstrating successful vegetation establishment with larger gains in green areas (+27.0%) than parking retrofits (+11.4%, p = 0.041). However, concurrent NDWI decline (−0.066, p = 0.063) indicates increased vegetation water stress despite irrigation infrastructure. NDMI improvements (+0.098, p = 0.016) suggest physiological adaptation through stomatal regulation. Principal Component Analysis (PCA) of meteo-climatic variables reveals temperature as the dominant environmental driver (PC2 loadings > 0.8), with municipality-wide NDVI-temperature correlations of r = −0.87. These multi-scale findings validate sustained NbS effectiveness in enhancing vegetation density and ecosystem services, yet simultaneously expose critical water-limitation trade-offs in Mediterranean semi-arid contexts, necessitating adaptive irrigation management and continued monitoring for long-term urban climate resilience. The integrated monitoring approach underscores the critical role of continuous, multi-scale assessment in ensuring long-term success and adaptive management of NbS-based interventions. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Environmental Sustainability)
Show Figures

Figure 1

25 pages, 10321 KB  
Article
Improving the Accuracy of Optical Satellite-Derived Bathymetry Through High Spatial, Spectral, and Temporal Resolutions
by Giovanni Andrea Nocera, Valeria Lo Presti, Attilio Sulli and Antonino Maltese
Remote Sens. 2026, 18(2), 270; https://doi.org/10.3390/rs18020270 - 14 Jan 2026
Viewed by 184
Abstract
Accurate nearshore bathymetry is essential for various marine applications, including navigation, resource management, and the protection of coastal ecosystems and the services they provide. This study presents an approach to enhance the accuracy of bathymetric estimates derived from high-spatial- and high-temporal-resolution optical satellite [...] Read more.
Accurate nearshore bathymetry is essential for various marine applications, including navigation, resource management, and the protection of coastal ecosystems and the services they provide. This study presents an approach to enhance the accuracy of bathymetric estimates derived from high-spatial- and high-temporal-resolution optical satellite imagery. The proposed technique is particularly suited for multispectral sensors that acquire spectral bands sequentially rather than simultaneously. PlanetScope SuperDove imagery was employed and validated against bathymetric data collected using a multibeam echosounder. The study area is the Gulf of Sciacca, located along the southwestern coast of Sicily in the Mediterranean Sea. Here, multibeam data were acquired along transects that are subparallel to the shoreline, covering depths ranging from approximately 7 m to 50 m. Satellite imagery was radiometrically and atmospherically corrected and then processed using a simplified radiative transfer transformation to generate a continuous bathymetric map extending over the entire gulf. The resulting satellite-derived bathymetry achieved reliable accuracy between approximately 5 m and 25 m depth. Beyond these limits, excessive signal attenuation for higher depths and increased water turbidity close to shore introduced significant uncertainties. The innovative aspect of this approach lies in the combined use of spectral averaging among the most water-penetrating bands, temporal averaging across multiple acquisitions, and a liquid-facets noise reduction technique. The integration of these multi-layer inputs led to improved accuracy compared to using single-date or single-band imagery alone. Results show a strong correlation between the satellite-derived bathymetry and multibeam measurements over sandy substrates, with an estimated error of ±6% at a 95% confidence interval. Some discrepancies, however, were observed in the presence of mixed pixels (e.g., submerged vegetation or rocky substrates) or surface artifacts. Full article
Show Figures

Figure 1

30 pages, 6190 KB  
Article
A Multi-Temporal Sentinel-2 and Machine Learning Approach for Precision Burned Area Mapping: The Sardinia Case Study
by Claudia Collu, Dario Simonetti, Francesco Dessì, Marco Casu, Costantino Pala and Maria Teresa Melis
Remote Sens. 2026, 18(2), 267; https://doi.org/10.3390/rs18020267 - 14 Jan 2026
Viewed by 179
Abstract
The escalating threat of wildfires under global climate change necessitates rigorous monitoring to mitigate environmental and socio-economic risks. Burned area (BA) mapping is crucial for understanding fire dynamics, assessing ecosystem impacts, and supporting sustainable land management under increasing fire frequency. This study aims [...] Read more.
The escalating threat of wildfires under global climate change necessitates rigorous monitoring to mitigate environmental and socio-economic risks. Burned area (BA) mapping is crucial for understanding fire dynamics, assessing ecosystem impacts, and supporting sustainable land management under increasing fire frequency. This study aims to develop a high-resolution detection framework specifically calibrated for Mediterranean environmental conditions, ensuring the production of consistent and accurate annual BA maps. Using Sentinel-2 MSI time series over Sardinia (Italy), the research objectives were to: (i) integrate field surveys with high-resolution photointerpretation to build a robust, locally tuned training dataset; (ii) evaluate the discriminative power of multi-temporal spectral indices; and (iii) implement a Random Forest classifier capable of providing higher spatial precision than current operational products. Validation results show a Dice Coefficient (DC) of 91.8%, significantly outperforming the EFFIS Burnt Area product (DC = 79.9%). The approach proved particularly effective in detecting small and rapidly recovering fires, often underrepresented in existing datasets. While inaccuracies persist due to cloud cover and landscape heterogeneity, this study demonstrates the effectiveness of a machine learning approach for long-term monitoring, for generating multi-year wildfire inventories, offering a vital tool for data-driven forest policy, vegetation recovery assessment and land-use change analysis in fire-prone regions. Full article
Show Figures

Graphical abstract

14 pages, 943 KB  
Article
Morphophysiological Responses of Two Riparian Species Exposed to Water Restriction and Light Protection Conditions
by Karen Peña-Rojas, Sergio Donoso, Patricio Valenzuela-Celis, Miguel Quintanilla, Alejandro Riquelme, Claudia Espinoza, Rodrigo Gangas, Cristian Araya-Boza and Carolain Badaracco
Plants 2026, 15(2), 259; https://doi.org/10.3390/plants15020259 - 14 Jan 2026
Viewed by 320
Abstract
Climate change has intensified summer drought and high solar radiation in Mediterranean ecosystems, generating abiotic stress that limits the establishment of riparian species. We conducted a nursery experiment to evaluate the effects of two levels of water availability and light intensity on the [...] Read more.
Climate change has intensified summer drought and high solar radiation in Mediterranean ecosystems, generating abiotic stress that limits the establishment of riparian species. We conducted a nursery experiment to evaluate the effects of two levels of water availability and light intensity on the growth and physiological responses of two native riparian species from Mediterranean Chile: Drimys winteri and Persea lingue. A bi-factorial design combined two irrigation treatments (well-watered and water restriction) and two light intensity levels manipulated through a light protection treatment (20% shade mesh and full light exposure). Water restriction was applied gradually until 15–20% (v/v) substrate moisture, defined as maximum water restriction, followed by rehydration. Morphological variables (height, root collar diameter, and shoot-to-root ratio) and physiological traits (predawn water potential, chlorophyll fluorescence, and electron transport rate) were measured. Growth responses were affected by the light protection treatment, which promoted a significant height growth in both species. Water stress affected the global response of both species but they differed in their post-stress hydraulic recovery: P. lingue fully recovered its predawn water potential, whereas Drimys winteri did not. Our study provides measurable and quantifiable values that demonstrate the sensitivity of these species to water stress. Full article
Show Figures

Graphical abstract

20 pages, 2667 KB  
Article
Effects of Post-Fire Silvicultural Practices on Medium and Large-Sized Mammal Communities in Mediterranean Forests
by Yasin İlemin, Serkan Özdemir and Okan Ürker
Fire 2026, 9(1), 37; https://doi.org/10.3390/fire9010037 - 14 Jan 2026
Viewed by 688
Abstract
Wildfire is a dominant ecological force in Mediterranean pine forests, and post-fire silvicultural practices can substantially alter their recovery trajectories. In this study, we examined how natural regeneration and artificial plantations influence the composition, structure, and functional roles of medium and large-sized mammal [...] Read more.
Wildfire is a dominant ecological force in Mediterranean pine forests, and post-fire silvicultural practices can substantially alter their recovery trajectories. In this study, we examined how natural regeneration and artificial plantations influence the composition, structure, and functional roles of medium and large-sized mammal communities in burned Pinus brutia forests of southwestern Türkiye. Camera trap data were combined with linear mixed-effects models, functional diversity metrics, and indicator species analysis to assess community responses. Mammalian assemblages showed marked shifts across treatments: generalist carnivores such as Vulpes vulpes and Canis aureus dominated burned areas, whereas higher-trophic specialists like Caracal caracal were restricted to unburned forests. Functional richness was consistently higher in unburned stands, while artificial plantations reduced both richness and evenness. Natural regeneration partly mitigated these declines by sustaining more balanced community structures. Indicator species analysis confirmed these patterns, with Lepus europaeus strongly associated with burned sites and C. caracal with unburned forests. Overall, findings demonstrate that post-fire silvicultural practices strongly shape mammalian community assembly and functional diversity. Natural regeneration preserves structural heterogeneity and supports functionally diverse assemblages, whereas artificial plantations promote homogenization. Effective restoration strategies should therefore integrate wildlife responses with vegetation recovery to strengthen ecosystem resilience and maintain the ecological roles of mammals. Full article
Show Figures

Figure 1

19 pages, 1897 KB  
Article
Ecophysiological and Biochemical Adaptation of Thymus saturejoides to Contrasting Soil Conditions in the Western High Atlas Under Climate Change
by Mohamed El Hassan Bouchari, Abdelilah Meddich, Abderrahim Boutasknit, Redouane Ouhaddou, Boujemaa Fassih, Lahoucine Ech-Chatir, Mohamed Anli and Abdelmajid Haddioui
Soil Syst. 2026, 10(1), 13; https://doi.org/10.3390/soilsystems10010013 - 14 Jan 2026
Viewed by 124
Abstract
In the context of climate change, alterations to the physico-chemical properties of soils, particularly in Mediterranean regions, are a growing source of preoccupation. This study analyzes the ecological plasticity and biochemical adaptability of Thymus saturejoides to changes in soil physico-chemical properties in four [...] Read more.
In the context of climate change, alterations to the physico-chemical properties of soils, particularly in Mediterranean regions, are a growing source of preoccupation. This study analyzes the ecological plasticity and biochemical adaptability of Thymus saturejoides to changes in soil physico-chemical properties in four contrasting environments in Morocco’s western High Atlas (TM: Tidili msfioua, SF: Sti fadma, TA: Taouss, TN: Tisi ntast). It highlights the influence of edaphic characteristics on the physiology and metabolic composition of the species, revealing marked soil heterogeneity between sites. The results for the physico-chemical characteristics of the soil revealed marked heterogeneity between sites. Tisi ntast and Taouss soils had the highest values in terms of electrical conductivity (TN: 0.25 dS/m, TA: 0.18 dS/m), available phosphorus (TN: 18.58 ppm and TA: 26.06 ppm) and total nitrogen (TN: 0.27% and TA: 0.14%), associated with a silty texture, suggesting higher fertility. Conversely, the soil at the TM site was characterized by low total nitrogen content (0.09%), a high C/N ratio (24.4) and a sandy-silty texture, indicating more constraining conditions for plant growth. From a physiological standpoint, plants from the TA site had the lowest chlorophyll levels (17.10 mg g−1FW), while those from the TN site showed the highest levels (31.08 mg g−1FW), accompanied by increased protein content and reduced polyphenol oxidase and peroxidase. In contrast, TM plants showed significant accumulation of total soluble sugars (30 mg g−1FW), proline (22.53 µmol g−1FW), hydrogen peroxide (1.33 nmol g−1FW) and malondialdehyde (62.97 nmol g−1FW), reflecting strong activation of oxidative stress responses. On the other hand, plants from the TA site displayed significantly lower levels of these stress markers compared to other sites, suggesting greater physiological resilience. These results highlight the pivotal role of interactions between edaphic and environmental conditions in modulating plant physiological and biochemical responses, shedding light on the ecological adaptation mechanisms of plant species to the contrasting ecosystems of the Western High Atlas. Full article
Show Figures

Figure 1

24 pages, 1882 KB  
Systematic Review
Global Shifts in Fire Regimes Under Climate Change: Patterns, Drivers, and Ecological Implications Across Biomes
by Ana Paula Oliveira and Paulo Gil Martins
Forests 2026, 17(1), 104; https://doi.org/10.3390/f17010104 - 13 Jan 2026
Viewed by 383
Abstract
Wildfire regimes are undergoing rapid transformation under anthropogenic climate change, with major implications for biodiversity, carbon cycling, and ecosystem resilience. This systematic review synthesizes findings from 42 studies across global, continental, and regional scales to assess emerging patterns in fire frequency, intensity, and [...] Read more.
Wildfire regimes are undergoing rapid transformation under anthropogenic climate change, with major implications for biodiversity, carbon cycling, and ecosystem resilience. This systematic review synthesizes findings from 42 studies across global, continental, and regional scales to assess emerging patterns in fire frequency, intensity, and seasonality, and to identify climatic, ecological, and anthropogenic drivers shaping these changes. Across biomes, evidence shows increasingly fire-conducive conditions driven by rising temperatures, vapor-pressure deficit, and intensifying drought, with climate model projections indicating amplification of extreme fire weather this century. Boreal ecosystems show heightened fire danger and carbon-cycle vulnerability; Mediterranean and Iberian regions face extended fire seasons and faster spread rates; tropical forests, particularly the Amazon, are shifting toward more flammable states due to drought–fragmentation interactions; and savannas display divergent moisture- and fuel-limited dynamics influenced by climate and land use. These results highlight the emergence of biome-specific fire–climate–fuel feedback that may push certain ecosystems toward alternative stable states. The review underscores the need for improved attribution frameworks, integration of fire–vegetation–carbon feedback into Earth system models, and development of adaptive, regionally tailored fire-management strategies. Full article
(This article belongs to the Special Issue Forest Fire: Landscape Patterns, Risk Prediction and Fuels Management)
Show Figures

Graphical abstract

Back to TopTop