Technical Challenges for Multi-Temporal and Multi-Sensor Image Processing Surveyed by UAV for Mapping and Monitoring in Precision Agriculture
Abstract
:1. Introduction
2. Materials
2.1. UAV and Payload
2.2. Case Study
2.3. Ground Data
3. Methods
3.1. Mission Flight Planning
- S01: May 16 (experimental, before sowing);
- S02: May 25 (experimental);
- S03: June 14 (experimental);
- S04: June 17 (experimental);
- S05: June 26 (production);
- S06: July 03 (production);
- S07: July 19 (production);
- S08: August 05 (production);
- S09: September 04 (production, after harvesting).
3.2. Thermal Image Pre-Processing
3.3. Image Processing
4. Results
4.1. Sfm Quality
4.2. UAV Survey Checklist
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGL | Above Ground Level |
AI | Artificial Intelligence |
AMSL | Above Mean Sea Level |
AWL | LIFE AGROWETLANDS II |
BVLOS | Beyond Visual Line Of Sight |
CC | Canopy Cover |
COTS | Commercial Off-The-Shelf |
DEM | Digital Elevation Model |
DSM | Digital Surface Model |
DSS | Decision Support System |
EXIF | Exchangeable Image File |
FOV | Field Of View |
GCP | Ground Control Point |
GCS | Ground Control Station |
GIS | Geographic Information System |
GNSS | Global Navigation Satellite System |
GSD | Ground Sample Distance |
EU | European Union |
FFC | Flat Field Correction |
ICP | Iterative Closest Point |
IMU | Inertial Measurement Unit |
LiDAR | Light Detection And Ranging |
LST | Land Surface Temperature |
MTOW | Maximum Take-Off Weight |
NRTK | Network Real-Time Kinematic |
NOTAM | Notice To Airmen |
NFZ | No-Flight Zone |
PA | Precision Agriculture |
PPE | Personal Protective Equipment |
RGB | Red, Green, Blue |
RPAS | Remotely Piloted Aerial Systems |
RTH | Return To Home |
RTK | Real-time Kinematic |
SLAM | Simultaneous Localization And Mapping |
SfM | Structure from Motion |
TIFF | Tag Image File Format |
UA | Unmanned Aircraft |
UAS | Unmanned Aircraft System |
UAV | Unmanned Aerial Vehicle |
VLOS | Visual Line Of Sight |
VPS | Vision Positioning System |
VTOL | Vertical Take-Off and Landing |
WSN | Wireless Sensor Network |
Appendix A. Checklist
- 1.
- PRELIMINARY INSTRUMENTS CHECK:
- 1.1
- Verify installation and capacity of storage media for each sensor;
- 1.2
- Recharge all batteries in the UAV and GCS;
- 1.3
- Checking availability of any firmware and software updates;
- 1.4
- Preparation of spare materials for UAV such as propellers, tools, etc.;
- 1.5
- Preparation of survey support instruments: GNSS receivers, thermocouples, etc.;
- 1.6
- Preparation of targets for GCP and related supports;
- 1.7
- Verification of necessary documentation for UAV flight: permits, insurance, pilot training, etc.;
- 1.8
- Verification of safety equipment and Personal Protective Equipment (PPE).
- 2.
- PRELIMINARY MISSION PLANNING:
- 2.1
- Definition of survey area and photogrammetric flight planning;
- 2.2
- Verification of weather forecast, wind and its impact on UAV range;
- 2.3
- Verification of Notice to Airmen (NOTAM) and NFZ;
- 2.4
- Verification of local authorizations for the area to be flown over and access to the mission area.
- 3.
- LAUNCH SITE SETUP:
- 3.1
- Verification of the take-off and landing area;
- 3.2
- Verification of any physical obstacles or electromagnetic interference in the survey area;
- 3.3
- Arrangement of GCPs within the area to be surveyed;
- 3.4
- GNSS survey of the position of each GCP;
- 3.5
- Setting thermocouples on target for thermal survey.
- 4.
- UAS EQUIPMENT CHECK:
- 4.1
- Verification of tablet–radio connection;
- 4.2
- Verification of correct gimbal movement of each sensor;
- 4.3
- UAV inspection and verification: propeller tightening, any damage to the structure, motors, compass, GNSS, Inertial Measurement Unit (IMU) and Vision Positioning System (VPS), and related electronic connections;
- 4.4
- Battery insertion;
- 4.5
- Memory media insertion;
- 4.6
- Sensor connection (for DJI Matrice 210: Pos1 for thermal sensor and Pos2 for optical sensor);
- 4.7
- Put on PPE;
- 4.8
- Setting flight plan on tablet–radio control;
- 4.9
- Checking radio control mode setting;
- 4.10
- Setting flight planner (Litchi);
- 4.11
- Check radio control antenna position;
- 4.12
- Turn on radio control.
- 5.
- PRE-FLIGHT:
- 5.1
- Synchronization of takeoff time with satellite passage;
- 5.2
- “GeoFence” setting for flight limits: maximum flight altitude and maximum distance
- 5.3
- Battery threshold level settings;
- 5.4
- UAV power on;
- 5.5
- Compass calibration (it may be convienent to perform it before mounting the sensors with the gimbals);
- 5.6
- IMU and VPS calibration check;
- 5.7
- Thermal camera parameter setup (Zenmuse XT): saving RJPEG radiometric images and preparing for Flat Field Correction (FFC) calibration;
- 5.8
- Optical camera parameter setup: white balance, shutter speed, aperture, interval shooting;
- 5.9
- Gimbal motion synchronization of the two cameras set nadiral;
- 5.10
- UAV positioning on take-off point;
- 5.11
- UAV stays on a few minutes to let sensors reach operating temperature;
- 5.12
- RTH point setting;
- 5.13
- Radio control signal verification;
- 5.14
- GNSS signal verification;
- 5.15
- Battery check: charge, temperature, UAV, and GCS voltage;
- 5.16
- Flight mode verification: for DJI Matrice 210 setting P (Positioning);
- 5.17
- Zenmuse XT thermal camera calibration: FFC on the ground before takeoff using an aluminum cover with uniform temperature to cover the camera’s field of view as directed by the manufacturer;
- 5.18
- Removal of lens cover and verification of lens cleanliness of each sensor.
- 6.
- TAKE-OFF:
- 6.1
- UAV LED status signal check;
- 6.2
- Propeller installation;
- 6.3
- Verify launch site clear for take off;
- 6.4
- Record takeoff time;
- 6.5
- Start engines;
- 6.6
- Manual takeoff and verify stable hovering;
- 6.7
- Verify command response;
- 6.8
- Planned flight start;
- 6.9
- Nadiral sensor check;
- 6.10
- Secondary optical camera setup with interval shooting.
- 7.
- POST-FLIGHT:
- 7.1
- Landing at end of mission;
- 7.2
- Landing time recording;
- 7.3
- Stop optical camera interval shot;
- 7.4
- Repeat FFC procedure for thermal camera calibration;
- 7.5
- Power OFF UAV;
- 7.6
- Power OFF GCS;
- 7.7
- Extracting memory media and making backup copy of acquired data;
- 7.8
- Recording flight data on logbook;
- 7.9
- Battery change when necessary to perform a second flight;
- 7.10
- Target and sensor recovery at end of mission.
References
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Delavarpour, N.; Koparan, C.; Nowatzki, J.; Bajwa, S.; Sun, X. A technical study on UAV characteristics for precision agriculture applications and associated practical challenges. Remote Sens. 2021, 13, 1204. [Google Scholar] [CrossRef]
- Mogili, U.R.; Deepak, B.B. Review on Application of Drone Systems in Precision Agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Merz, M.; Pedro, D.; Skliros, V.; Bergenhem, C.; Himanka, M.; Houge, T.; Matos-Carvalho, J.P.; Lundkvist, H.; Cürüklü, B.; Hamrén, R.; et al. Autonomous UAS-Based Agriculture Applications: General Overview and Relevant European Case Studies. Drones 2022, 6, 128. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Rivas, J.R.; Nemmaoui, A.; Peñalver, A.; Aguilar, M.A. UAV-based digital terrain model generation under leaf-off conditions to support teak plantations inventories in tropical dry forests. A case of the coastal region of Ecuador. Sensors 2019, 19, 1934. [Google Scholar] [CrossRef] [Green Version]
- Tmušić, G.; Manfreda, S.; Aasen, H.; James, M.R.; Gonçalves, G.; Ben-Dor, E.; Brook, A.; Polinova, M.; Arranz, J.J.; Mészáros, J.; et al. Current practices in UAS-based environmental monitoring. Remote Sens. 2020, 12, 1001. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Qin, R.; Chen, X. Unmanned aerial vehicle for remote sensing applications—A review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Liu, J.; Guo, H.; Kato, N. Toward Robust and Intelligent Drone Swarm: Challenges and Future Directions. IEEE Netw. 2020, 34, 278–283. [Google Scholar] [CrossRef]
- Gago, J.; Estrany, J.; Estes, L.; Fernie, A.R.; Alorda, B.; Brotman, Y.; Flexas, J.; Escalona, J.M.; Medrano, H. Nano and Micro Unmanned Aerial Vehicles (UAVs): A New Grand Challenge for Precision Agriculture? Curr. Protoc. Plant Biol. 2020, 5, e20103. [Google Scholar] [CrossRef] [PubMed]
- Aslan, M.F.; Durdu, A.; Sabanci, K.; Ropelewska, E.; Gültekin, S.S. A Comprehensive Survey of the Recent Studies with UAV for Precision Agriculture in Open Fields and Greenhouses. Appl. Sci. 2022, 12, 1047. [Google Scholar] [CrossRef]
- Nex, F.; Armenakis, C.; Cramer, M.; Cucci, D.A.; Gerke, M.; Honkavaara, E.; Kukko, A.; Persello, C.; Skaloud, J. UAV in the advent of the twenties: Where we stand and what is next. ISPRS J. Photogramm. Remote Sens. 2022, 184, 215–242. [Google Scholar] [CrossRef]
- Liu, J.; Xiang, J.; Jin, Y.; Liu, R.; Yan, J.; Wang, L. Boost precision agriculture with unmanned aerial vehicle remote sensing and edge intelligence: A survey. Remote Sens. 2021, 13, 4387. [Google Scholar] [CrossRef]
- Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS J. Photogramm. Remote Sens. 2018, 146, 124–136. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Messina, G.; Modica, G. Applications of UAV thermal imagery in precision agriculture: State of the art and future research outlook. Remote Sens. 2020, 12, 1491. [Google Scholar] [CrossRef]
- Rincón, M.G.; Mendez, D.; Colorado, J.D. Four-Dimensional Plant Phenotyping Model Integrating Low-Density LiDAR Data and Multispectral Images. Remote Sens. 2022, 14, 356. [Google Scholar] [CrossRef]
- Inoue, Y.; Yokoyama, M. Drone-Based Optical, Thermal, and 3d Sensing for Diagnostic Information in Smart Farming—Systems and Algorithms. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 7266–7269. [Google Scholar] [CrossRef]
- Donati, C.; Mammarella, M.; Comba, L.; Biglia, A.; Gay, P.; Dabbene, F. 3D Distance Filter for the Autonomous Navigation of UAVs in Agricultural Scenarios. Remote Sens. 2022, 14, 1374. [Google Scholar] [CrossRef]
- Pagliai, A.; Ammoniaci, M.; Sarri, D.; Lisci, R.; Perria, R.; Vieri, M.; D’arcangelo, E.; Storchi, P.; Kartsiotis, S.P. Comparison of Aerial and Ground 3D Point Clouds for Canopy Size Assessment in Precision Viticulture. Remote Sens. 2022, 14, 1145. [Google Scholar] [CrossRef]
- Mazzia, V.; Comba, L.; Khaliq, A.; Chiaberge, M.; Gay, P. UAV and machine learning based refinement of a satellite-driven vegetation index for precision agriculture. Sensors 2020, 20, 2530. [Google Scholar] [CrossRef] [PubMed]
- Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Di Gennaro, S.F.; Herrero-Langreo, A.; Miranda, C.; Royo, J.B.; Matese, A. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agric. Water Manag. 2017, 183, 49–59. [Google Scholar] [CrossRef]
- López, A.; Jurado, J.M.; Ogayar, C.J.; Feito, F.R. An optimized approach for generating dense thermal point clouds from UAV-imagery. ISPRS J. Photogramm. Remote Sens. 2021, 182, 78–95. [Google Scholar] [CrossRef]
- Javadnejad, F.; Gillins, D.T.; Parrish, C.E.; Slocum, R.K. A photogrammetric approach to fusing natural colour and thermal infrared UAS imagery in 3D point cloud generation. Int. J. Remote Sens. 2020, 41, 211–237. [Google Scholar] [CrossRef]
- Iizuka, K.; Watanabe, K.; Kato, T.; Putri, N.A.; Silsigia, S.; Kameoka, T.; Kozan, O. Visualizing the spatiotemporal trends of thermal characteristics in a peatland plantation forest in Indonesia: Pilot test using unmanned aerial systems (UASs). Remote Sens. 2018, 10, 1345. [Google Scholar] [CrossRef] [Green Version]
- AGROWETLANDS. AGROWETLANDS II Project Funded by LIFE 2014–2020 European Union Programme. Available online: http://www.lifeagrowetlands2.eu/ (accessed on 31 August 2022).
- Calone, R.; Sanoubar, R.; Lambertini, C.; Speranza, M.; Vittori Antisari, L.; Vianello, G.; Barbanti, L. Salt tolerance and na allocation in sorghum bicolor under variable soil and water salinity. Plants 2020, 9, 561. [Google Scholar] [CrossRef]
- Cipolla, S.S.; Maglionico, M.; Masina, M.; Lamberti, A.; Daprà, I. Real Time Monitoring of Water Quality in an Agricultural Area with Salinity Problems. Environ. Eng. Manag. J. 2019, 18, 2229–2240. [Google Scholar]
- Vittori Antisari, L.; Speranza, M.; Ferronato, C.; De Feudis, M.; Vianello, G.; Falsone, G. Assessment of water quality and soil salinity in the agricultural coastal plain Ravenna, North Italy. Minerals 2020, 10, 369. [Google Scholar] [CrossRef] [Green Version]
- Masina, M.; Calone, R.; Barbanti, L.; Mazzotti, C.; Lamberti, A.; Speranza, M. Smart water and soil-salinity management in agro-wetlands. Environ. Eng. Manag. J. 2019, 18, 2273–2285. [Google Scholar]
- De Feudis, M.; Falsone, G.; Gherardi, M.; Speranza, M.; Vianello, G.; Vittori Antisari, L. GIS-based soil maps as tools to evaluate land capability and suitability in a coastal reclaimed area (Ravenna, northern Italy). Int. Soil Water Conserv. Res. 2021, 9, 167–179. [Google Scholar] [CrossRef]
- Masina, M.; Lambertini, A.; Daprà, I.; Mandanici, E.; Lamberti, A. Remote Sensing Analysis of Surface Temperature from Heterogeneous Data in a Maize Field and Related Water Stress. Remote Sens. 2020, 12, 2506. [Google Scholar] [CrossRef]
- Bitelli, G.; Bonsignore, F.; Pellegrino, I.; Vittuari, L. Evolution of the techniques for subsidence monitoring at regional scale: The case of Emilia-Romagna region (Italy). Proc. Int. Assoc. Hydrol. Sci. 2015, 372, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Bitelli, G.; Bonsignore, F.; Del Conte, S.; Franci, F.; Lambertini, A.; Novali, F.; Severi, P.; Vittuari, L. Updating the subsidence map of Emilia-Romagna region (Italy) by integration of SAR interferometry and GNSS time series: The 2011–2016 period. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Antonellini, M.; Mollema, P.; Giambastiani, B.; Bishop, K.; Caruso, L.; Minchio, A.; Pellegrini, L.; Sabia, M.; Ulazzi, E.; Gabbianelli, G. Salt water intrusion in the coastal aquifer of the southern Po Plain, Italy. Hydrogeol. J. 2008, 16, 1541–1556. [Google Scholar] [CrossRef]
- Gómez-López, J.M.; Pérez-García, J.L.; Mozas-Calvache, A.T.; Delgado-García, J. Mission flight planning of rpas for photogrammetric studies in complex scenes. ISPRS Int. J. Geo-Inf. 2020, 9, 392. [Google Scholar] [CrossRef]
- AeroScientific. DJIFlightPlanner. Available online: https://www.djiflightplanner.com/ (accessed on 31 August 2022).
- Roth, L.; Hund, A.; Aasen, H. PhenoFly Planning Tool: Flight planning for high-resolution optical remote sensing with unmanned areal systems. Plant Methods 2018, 14, 116. [Google Scholar] [CrossRef] [Green Version]
- Team, A.D. ArduPilot Mission Planner. Available online: https://ardupilot.org/planner/ (accessed on 31 August 2022).
- Rangel, J.M.G.; Gonçalves, G.R.; Pérez, J.A. The impact of number and spatial distribution of GCPs on the positional accuracy of geospatial products derived from low-cost UASs. Int. J. Remote Sens. 2018, 39, 7154–7171. [Google Scholar] [CrossRef]
- Lopes Bento, N.; Araújo E Silva Ferraz, G.; Alexandre Pena Barata, R.; Santos Santana, L.; Diennevan Souza Barbosa, B.; Conti, L.; Becciolini, V.; Rossi, G. Overlap influence in images obtained by an unmanned aerial vehicle on a digital terrain model of altimetric precision. Eur. J. Remote Sens. 2022, 55, 263–276. [Google Scholar] [CrossRef]
- Deng, J.; Zhong, Z.; Huang, H.; Lan, Y.; Han, Y.; Zhang, Y. Lightweight semantic segmentation network for real-time weed mapping using unmanned aerial vehicles. Appl. Sci. 2020, 10, 7132. [Google Scholar] [CrossRef]
- Satellite Data Services. Polar Orbit Tracks. Available online: https://www.ssec.wisc.edu/datacenter/ (accessed on 31 August 2022).
- Kuenzer, C.; Dech, S. Theoretical Background of Thermal Infrared Remote Sensing. In Thermal Infrared Remote Sensing: Sensors, Methods, Applications; Kuenzer, C., Dech, S., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 1–26. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landforms 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- Mian, O.; Lutes, J.; Lipa, G.; Hutton, J.J.; Gavelle, E.; Borghini, S. Direct georeferencing on small unmanned aerial platforms for improved reliability and accuracy of mapping without the need for ground control points. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.-ISPRS Arch. 2015, 40, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.; Lucieer, A.; Wallace, L. Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2738–2745. [Google Scholar] [CrossRef]
- Chiabrando, F.; Giulio Tonolo, F.; Lingua, A. Uav direct georeferencing approach in an emergency mapping context. the 2016 central Italy earthquake case study. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.-ISPRS Arch. 2019, 42, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Syetiawan, A.; Gularso, H.; Kusnadi, G.I.; Pramudita, G.N. Precise topographic mapping using direct georeferencing in UAV. IOP Conf. Ser.: Earth Environ. Sci 2020, 500, 012029. [Google Scholar] [CrossRef]
- Khodaei, B.; Samadzadegan, F.; Javan, F.D.; Hasani, H. 3D surface generation from aerial thermal imagery. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.-ISPRS Arch. 2015, 40, 401–405. [Google Scholar] [CrossRef] [Green Version]
- Maes, W.H.; Huete, A.R.; Steppe, K. Optimizing the processing of UAV-based thermal imagery. Remote Sens. 2017, 9, 476. [Google Scholar] [CrossRef] [Green Version]
- Conte, P.; Girelli, V.A.; Mandanici, E. Structure from Motion for aerial thermal imagery at city scale: Pre-processing, camera calibration, accuracy assessment. ISPRS J. Photogramm. Remote Sens. 2018, 146, 320–333. [Google Scholar] [CrossRef]
- Ribeiro-Gomes, K.; Hernández-López, D.; Ortega, J.F.; Ballesteros, R.; Poblete, T.; Moreno, M.A. Uncooled Thermal Camera Calibration and Optimization of the Photogrammetry Process for UAV Applications in Agriculture. Sensors 2017, 17, 2173. [Google Scholar] [CrossRef]
- Alarcón, V.; García, M.; Alarcón, F.; Viguria, A.; Martínez, A.; Janisch, D.; Acevedo, J.J.; Maza, I.; Ollero, A. Procedures for the Integration of Drones into the Airspace Based on U-Space Services. Aerospace 2020, 7, 128. [Google Scholar] [CrossRef]
- Ramirez-Atencia, C.; Camacho, D. Extending QGroundControl for Automated Mission Planning of UAVs. Sensors 2018, 18, 2339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisiol, F.; Lambertini, A.; Franci, F.; Mandanici, E. An Object-Oriented Approach to the Classification of Roofing Materials Using Very High-Resolution Satellite Stereo-Pairs. Remote Sens. 2022, 14, 849. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Hartley, R.J.a.L.; Henderson, I.L.; Jackson, C.L. BVLOS Unmanned Aircraft Operations in Forest Environments. Drones 2022, 6, 167. [Google Scholar] [CrossRef]
- Fang, S.X.; O’young, S.; Rolland, L. Development of small UAS beyond-visual-line-of-sight (BVLOS) flight operations: System requirements and procedures. Drones 2018, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Tsiamis, N.; Efthymiou, L.; Tsagarakis, K.P. A comparative analysis of the legislation evolution for drone use in oecd countries. Drones 2019, 3, 75. [Google Scholar] [CrossRef] [Green Version]
- Alamouri, A.; Lampert, A.; Gerke, M. An exploratory investigation of UAS regulations in europe and the impact on effective use and economic potential. Drones 2021, 5, 63. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lambertini, A.; Mandanici, E.; Tini, M.A.; Vittuari, L. Technical Challenges for Multi-Temporal and Multi-Sensor Image Processing Surveyed by UAV for Mapping and Monitoring in Precision Agriculture. Remote Sens. 2022, 14, 4954. https://doi.org/10.3390/rs14194954
Lambertini A, Mandanici E, Tini MA, Vittuari L. Technical Challenges for Multi-Temporal and Multi-Sensor Image Processing Surveyed by UAV for Mapping and Monitoring in Precision Agriculture. Remote Sensing. 2022; 14(19):4954. https://doi.org/10.3390/rs14194954
Chicago/Turabian StyleLambertini, Alessandro, Emanuele Mandanici, Maria Alessandra Tini, and Luca Vittuari. 2022. "Technical Challenges for Multi-Temporal and Multi-Sensor Image Processing Surveyed by UAV for Mapping and Monitoring in Precision Agriculture" Remote Sensing 14, no. 19: 4954. https://doi.org/10.3390/rs14194954
APA StyleLambertini, A., Mandanici, E., Tini, M. A., & Vittuari, L. (2022). Technical Challenges for Multi-Temporal and Multi-Sensor Image Processing Surveyed by UAV for Mapping and Monitoring in Precision Agriculture. Remote Sensing, 14(19), 4954. https://doi.org/10.3390/rs14194954