Satellite Clock Batch Estimation Accuracy Analysis and Its Impacts on PPP
Abstract
:1. Introduction
2. Methodology
2.1. Sources of Batch-Estimated Satellite Clock Biases
2.2. Suitable Observation Redundancy for Satellite Clock Batch Estimation
2.3. Impacts of Batch-Estimated Satellite Clock Biases on PPP
3. Results
3.1. Effect Analysis of Satellite Clock Batch Estimation
3.2. Effect Analysis of PPP Based on Batch-Estimated Satellite Clock
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nie, Z.; Xu, X.; Wang, Z.; Du, J. Initial Assessment of BDS PPP-B2b Service: Precision of Orbit and Clock Corrections, and PPP Performance. Remote Sens. 2021, 13, 2050. [Google Scholar] [CrossRef]
- Fu, W.; Yang, Y.; Zhang, Q.; Huang, G. Real-time estimation of BDS/GPS high-rate satellite clock offsets using sequential least squares. Adv. Space Res. 2018, 62, 477–487. [Google Scholar] [CrossRef]
- Ogutcu, S.; Farhan, H.T. Assessment of the GNSS PPP performance using ultra-rapid and rapid products from different analysis centres. Surv. Rev. 2020, 54, 34–47. [Google Scholar] [CrossRef]
- Chen, Q.; Song, S.; Zhou, W. Accuracy Analysis of GNSS Hourly Ultra-Rapid Orbit and Clock Products from SHAO AC of iGMAS. Remote Sens. 2021, 13, 1022. [Google Scholar] [CrossRef]
- Jiao, G.; Song, S. High-Rate One-Hourly Updated Ultra-Rapid Multi-GNSS Satellite Clock Offsets Estimation and Its Application in Real-Time Precise Point Positioning. Remote Sens. 2022, 14, 1257. [Google Scholar] [CrossRef]
- Li, H.; Liao, X.; Li, B.; Yang, L. Modeling of the GPS satellite clock error and its performance evaluation in precise point positioning. Adv. Space Res. 2018, 62, 845–854. [Google Scholar] [CrossRef]
- Zhao, L.; Li, N.; Li, H.; Wang, R.; Li, M. BDS Satellite Clock Prediction Considering Periodic Variations. Remote Sens. 2021, 13, 4058. [Google Scholar] [CrossRef]
- Hauschild, A.; Montenbruck, O. Kalman-filter-based GPS clock estimation for near real-time positioning. GPS Solut. 2008, 13, 173–182. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, Q.; Xu, G. Real-time clock offset prediction with an improved model. GPS Solut. 2013, 18, 95–104. [Google Scholar] [CrossRef]
- Ye, S.; Zhao, L.; Song, J.; Chen, D.; Jiang, W. Analysis of estimated satellite clock biases and their effects on precise point positioning. GPS Solut. 2017, 22, 16. [Google Scholar] [CrossRef]
- Heng, L.; Grace, X.G.; Walter, T.; Enge, P. Statistical Characterization of GPS Signal-In-Space Errors. In Proceedings of the 2011 International Technical Meeting of the Institute of Navigation, San Diego, CA, USA, 24–26 January 2011. [Google Scholar]
- Montenbruck, O.; Hauschild, A.; Steigenberger, P. Differential Code Bias Estimation using Multi-GNSS Observations and Global Ionosphere Maps. Navigation 2014, 61, 191–201. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, W.; Wang, C.; Yao, X.; Shi, C.; Liu, J. The impact of orbital errors on the estimation of satellite clock errors and PPP. Adv. Space Res. 2014, 54, 1571–1580. [Google Scholar] [CrossRef]
- Douša, J. The impact of errors in predicted GPS orbits on zenith troposphere delay estimation. GPS Solut. 2009, 14, 229–239. [Google Scholar] [CrossRef]
- Yao, Y.; He, Y.; Yi, W.; Song, W.; Cao, C.; Chen, M. Method for evaluating real-time GNSS satellite clock offset products. GPS Solut. 2017, 21, 1417–1425. [Google Scholar] [CrossRef]
- Gong, X.; Lou, Y.; Zheng, F.; Gu, S.; Shi, C.; Liu, J.; Jing, G. Evaluation and calibration of BeiDou receiver-related pseudorange biases. GPS Solut. 2018, 22, 98. [Google Scholar] [CrossRef]
- Gong, X.; Gu, S.; Zheng, F.; Wu, Q.; Liu, S.; Lou, Y. Improving GPS and Galileo precise data processing based on calibration of signal distortion biases. Measurement 2021, 174, 108981. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, L.; Yang, F.; Li, L.; Liu, X.; Zhang, R. Integrity monitoring for undifferenced and uncombined PPP under local environmental conditions. Meas. Sci. Technol. 2022, 33, 065010. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Jia, C.; Cheng, C.; Li, J.; Zhao, L. Integrity monitoring of carrier phase-based ephemeris fault detection. GPS Solut. 2020, 24, 43. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Q.; Xue, S. Random Optimization Algorithm on GNSS Monitoring Stations Selection for Ultra-Rapid Orbit Determination and Real-Time Satellite Clock Offset Estimation. Math. Probl. Eng. 2019, 2019, 7579185. [Google Scholar] [CrossRef]
- Yang, H.; Xu, C.; Gao, Y. Analysis of GPS satellite clock prediction performance with different update intervals and application to real-time PPP. Surv. Rev. 2017, 51, 43–52. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, H.; Xiao, G.; Du, L.; Gao, Y. Estimation of GPS LNAV based on IGS products for real-time PPP. GPS Solut. 2019, 23, 27. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, M.; Wang, C.; Hu, R.; Duan, T. A New BDS-2 Satellite Clock Bias Prediction Algorithm with an Improved Exponential Smoothing Method. Appl. Sci. 2020, 10, 7456. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, X.; Zhang, Y.; Liu, Z.; Li, C.; Hu, D. A Novel Short-Medium Term Satellite Clock Error Prediction Algorithm Based on Modified Exponential Smoothing Method. Math. Probl. Eng. 2018, 2018, 7486925. [Google Scholar] [CrossRef]
- Lou, Y.; Dai, X.; Song, W. Research on the influence of stations’ distance in high-accuracy GPS satellite clock offset estimation. Geomat. Inf. Sci. Wuhan Univ. 2011, 36, 397–400. [Google Scholar]
- Zhang, X.; Li, X.; Guo, F. Satellite clock estimation at 1 Hz for realtime kinematic PPP applications. GPS Solut. 2010, 15, 315–324. [Google Scholar] [CrossRef]
- Chen, L.; Song, W.; Yi, W.; Shi, C.; Lou, Y.; Guo, H. Research on a method of real-time combination of precise GPS clock corrections. GPS Solut. 2016, 21, 187–195. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, X.; Guo, F.; Liu, J. GPS inter-frequency clock bias estimation for both uncombined and ionospheric-free combined triple-frequency precise point positioning. J. Geod. 2018, 93, 473–487. [Google Scholar] [CrossRef]
- Li, X.; Xiong, Y.; Yuan, Y.; Wu, J.; Li, X.; Zhang, K.; Huang, J. Real-time estimation of multi-GNSS integer recovery clock with undifferenced ambiguity resolution. J. Geod. 2019, 93, 2515–2528. [Google Scholar] [CrossRef]
- Yao, J.; Yoon, S.; Stressler, B.; Hilla, S.; Schenewerk, M. GPS satellite clock estimation using global atomic clock network. GPS Solut. 2021, 25, 106. [Google Scholar] [CrossRef]
- Guo, J.; Xu, X.; Zhao, Q.; Liu, J. Precise orbit determination for quad-constellation satellites at Wuhan University: Strategy, result validation, and comparison. J. Geod. 2015, 90, 143–159. [Google Scholar] [CrossRef]
- Xia, F.; Ye, S.; Chen, D.; Tang, L.; Wang, C.; Ge, M.; Neitzel, F. Advancing the Solar Radiation Pressure Model for BeiDou-3 IGSO Satellites. Remote Sens. 2022, 14, 1460. [Google Scholar] [CrossRef]
- Fu, W.; Wang, L.; Chen, R.; Han, Y.; Zhou, H.; Li, T. Combined BDS-2/BDS-3 real-time satellite clock estimation with the overlapping B1I/B3I signals. Adv. Space Res. 2021, 68, 4470–4483. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, B.; Yuan, Y.; Zha, J.; Zhao, C. An efficient undifferenced method for estimating multi-GNSS high-rate clock corrections with data streams in real time. J. Geod. 2019, 93, 1435–1456. [Google Scholar] [CrossRef]
- Xie, W.; Huang, G.; Fu, W.; Li, P.; Cui, B. An efficient clock offset datum switching compensation method for BDS real-time satellite clock offset estimation. Adv. Space Res. 2021, 68, 1802–1813. [Google Scholar] [CrossRef]
- Huang, G.; Xie, W.; Wenju, F.; Li, P.; Wang, H.; Yue, F. BDS Real-time Satellite Clock Offsets Estimation with Three Different Datum Constraints. J. Glob. Position. Syst. 2021, 17, 34–47. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, C.; Li, L.; Wang, R.; Liu, Y.; Li, Z.; Zhao, L. BDS signal-in-space anomaly probability analysis over the last 6 years. GPS Solut. 2021, 25, 49. [Google Scholar] [CrossRef]
- Defraigne, P.; Bruyninx, C. On the link between GPS pseudorange noise and day-boundary discontinuities in geodetic time transfer solutions. GPS Solut. 2007, 11, 239–249. [Google Scholar] [CrossRef]
- Bock, H.; Dach, R.; Jäggi, A.; Beutler, G. High-rate GPS clock corrections from CODE: Support of 1 Hz applications. J. Geod. 2009, 83, 1083–1094. [Google Scholar] [CrossRef]
- Gong, X.; Gu, S.; Lou, Y.; Zheng, F.; Ge, M.; Liu, J. An efficient solution of real-time data processing for multi-GNSS network. J. Geod. 2017, 92, 797–809. [Google Scholar] [CrossRef]
- Yang, H.; Gao, Y. GPS Satellite Orbit Prediction at User End for Real-Time PPP System. Sensors 2017, 17, 1981. [Google Scholar] [CrossRef]
- Wang, J.; Huang, G.; Yang, Y.; Zhang, Q.; Gao, Y.; Xiao, G. FCB estimation with three different PPP models: Equivalence analysis and experiment tests. GPS Solut. 2019, 23, 93. [Google Scholar] [CrossRef]
- Zhou, F.; Dong, D.; Li, W.; Jiang, X.; Wickert, J.; Schuh, H. GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solut. 2018, 22, 33. [Google Scholar] [CrossRef]
- Wang, S.; Zhai, Y.; Zhan, X. Characterizing BDS signal-in-space performance from integrity perspective. Navigation 2021, 68, 157–183. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Y.; Zheng, K.; Yuan, Y.; Liu, G.; Xiong, Y. Precise Orbit and Clock Products of Galileo, BDS and QZSS from MGEX Since 2018: Comparison and PPP Validation. Remote Sens. 2020, 12, 1415. [Google Scholar] [CrossRef]
Items | Settings |
---|---|
Time | DOY from 001 to 365 in 2021 |
Basic observations | Undifferenced pseudorange and phase observations |
Combination model | Dual-frequency IF combination |
Observation signal | GPS: L1/L2 |
Elevation cutoff angle | 5° |
Sampling rate | 300 s |
Stochastic model | A priori precision of pseudorange: 0.1 m in unit weighting; A priori precision of phase: 0.001 m in unit weighting; Elevation angle weighting |
Station network | Global distributed network with 40 stations |
Station coordinate | Fixed station coordinates provided for IGS |
Hardware delay | Absorbed |
Tropospheric delay | Dry components: model correction; Wet components: mapping function and estimated every 2 h |
Ionospheric delay | Lower order: eliminate by dual-frequency IF combined; Higher order: ignore |
Receiver clock | Estimated by single point positioning as a priori value, and epoch-wise estimated |
Satellite clock | Select an initial satellite clock, and epoch-wise estimated |
Satellite orbit | Fixed by the satellite orbit products |
Ambiguity | Float solutions and estimated as constant for continuous arc |
Estimation strategy | Batch least square algorithms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Huang, W.; Li, H.; Wang, R.; Cui, P. Satellite Clock Batch Estimation Accuracy Analysis and Its Impacts on PPP. Remote Sens. 2022, 14, 3932. https://doi.org/10.3390/rs14163932
Li M, Huang W, Li H, Wang R, Cui P. Satellite Clock Batch Estimation Accuracy Analysis and Its Impacts on PPP. Remote Sensing. 2022; 14(16):3932. https://doi.org/10.3390/rs14163932
Chicago/Turabian StyleLi, Menghao, Weiquan Huang, Hui Li, Renlong Wang, and Peng Cui. 2022. "Satellite Clock Batch Estimation Accuracy Analysis and Its Impacts on PPP" Remote Sensing 14, no. 16: 3932. https://doi.org/10.3390/rs14163932
APA StyleLi, M., Huang, W., Li, H., Wang, R., & Cui, P. (2022). Satellite Clock Batch Estimation Accuracy Analysis and Its Impacts on PPP. Remote Sensing, 14(16), 3932. https://doi.org/10.3390/rs14163932