Automatic Mapping of Karez in Turpan Basin Based on Google Earth Images and the YOLOv5 Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Google Earth Images
2.3. Technical Framework
- The segmentation results were then converted from raster format to vector polygon format using the raster-to-polygon function in ArcToolbox in ArcGIS.
- The merge function in ArcToolbox was then used to merge multiple shapefiles into a single file.
- A feature-to-point tool was used to convert polygon features to point features, with each point representing a shaft.
2.3.1. Dataset
2.3.2. Training Parameter Setting
2.3.3. Evaluation Metrics
2.3.4. Post-Processing
- ArcGIS tool used: Spatial Statistics Tools\Analyzing Patterns\Average Nearest Neighbor to calculate the average distance observed between vertical wells.
- ArcGIS tool used: Analysis Tools\Proximity\Buffer to make buffer for shaft point based on average distance, and Dissolve Type was NONE.
- ArcGIS Data Management Tools\Generalization\Dissolve was used to fuse the buffer image obtained in the previous step, and the overlapping shafts in the buffer region were fused into a polygon. The image of the buffer without overlapping shafts in the buffer region did not change, and the area was fixed. The “area” field was added to the layer and Calculate Geometry of the fields was used to calculate the area of each object. The buffer area of the outliers was 4421.06 square meters. The outliers were saved in a separate layer based on this area.
- Using the Analysis Tools\Overlay\Erase tool, the outliers were erased on the karez layers predicted by YOLOv5 to obtain a more accurate vertical shaft database.
2.3.5. Karez Line Generation
2.3.6. Overlay of Karez Line and Crop
3. Experiments and Results
3.1. Quantitative Assessment of YOLOv5 Model
3.2. YOLOv5 Shaft Detection
3.3. Effect of Post-Processing
3.4. Karez Shaft Mapping of Turpan
3.5. Karez Line and Crop
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yujian, W.; Siming, W. Comparative Study on Qanat in Kazan of Iran and Turpan of Xinjiang. Agric. Archaeol. 2021, 1, 134–140. [Google Scholar]
- Hu, W.; Zhang, J.; Liu, Y. The qanats of Xinjiang: Historical development, characteristics and modern implications for envi-ronmental protection. J. Arid Land 2012, 4, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Ablimiti, N. Study on the Karez System and Its Influence on Ecological Environment in Turpan Area as an Example. Master’s Thesis, Xinjiang University, Urumqi, China, 2015. [Google Scholar]
- Yajun, W.; Sufen, W. Environment Change over the Aydingkol Lake Region in Turpan Basin, Xinjiang. J. Glaciol. Cryopedol. 2003, 25, 229–231. [Google Scholar]
- Yinglian, L. The Integrated Governance Research of Groundwater Over-Expolitation Region in Turpan Basin. Master’s Thesis, Xinjiang Agricultural University, Urumqi, China, 2017. [Google Scholar]
- Barbaix, S.; Kurban, A.; De Maeyer, P.; Chen, X.; Bourgeois, J. The use of historical sources in a multi-layered methodology for karez research in Turpan, China. Water Hist 2020, 12, 281–297. [Google Scholar] [CrossRef]
- Bertrand, A. The Hydraulic Systems in Turfan. Silk Road 2010, 8, 27–41. [Google Scholar]
- Deng, M.J. Kariz wells in arid land and mountain-front depressed ground reservoir. Shuikexue Jinzhan/Adv. Water Sci. 2010, 21, 748–756. [Google Scholar]
- Fu, R.; Shadeer, M.; Tiyipujiang, R. Study Breaking Mechanism of Karez Systems in Turpan Basin. Procedia Mater. Sci. 2014, 3, 1786–1791. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shi, P.; Khatteli, H.; Chen, F.; et al. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sens. Environ. 2019, 232, 111280. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Liu, C.; Liu, J.; Li, L.; Du, X.; Qian, G. Automated Extraction of the Archaeological Tops of Qanat Shafts from VHR Imagery in Google Earth. Remote Sens. 2014, 6, 11956–11976. [Google Scholar] [CrossRef] [Green Version]
- Soroush, M.; Mehrtash, A.; Khazraee, E.; Ur, J.A. Deep Learning in Archaeological Remote Sensing: Automated Qanat Detection in the Kurdistan Region of Iraq. Remote Sens. 2020, 12, 500. [Google Scholar] [CrossRef] [Green Version]
- Stinson, P.T.; Naglak, M.C.; Mandel, R.D.; Hoopes, J.W. The remote-sensing assessment of a threatened ancient water technology in Afghanistan. J. Archaeol. Sci. Rep. 2016, 10, 441–453. [Google Scholar] [CrossRef]
- Stein, A. Note on a Map of the Turfan Basin. Geogr. J. 1993, 82, 236–246. [Google Scholar] [CrossRef]
- Mächtle, B.; Hecht, S.; Manke, N.; Kromer, B.; Lindauer, S.; Li, C.S.; Li, Y.; Wang, X.; Bubenzer, O. The age and origin of Karez systems of silk road oases around Turpan, Xinjiang, P.R. of China. In Socio-Environmental Dynamics along the Historical Silk Road; Springer: Berlin/Heidelberg, Germany, 2019; Chapter 17; pp. 359–378. [Google Scholar] [CrossRef] [Green Version]
- Harlick, G. The Influence of Land Use Changes in Time and Space in Turpan Basin on Karez. Master’s Thesis, Xinjiang Normal University, Urumqi, China, 2017. [Google Scholar]
- Beibei, Y.; Gui, M.; Yongcai, S.; Dina, M. An Analysis of the Influencing Factors of Spatial Distribution Pattern of Karez in Turpan City. China Rural. Water Hydropower 2017, 12, 198–203+208. [Google Scholar]
- Zhijia, L. Circumglobal Distribution of Groundwater Irrigation Systems: Origin and Diffusion of Qanat Technology. Agric. Archaeol. 2018, 1, 205–214. [Google Scholar]
- Adley, A. Study on Karez in Turpan Based on the Viewpoint of Ecological Anthology. J. Orig. Ecol. Natl. Cult. 2016, 8, 8–15. [Google Scholar]
- Azari Rad, M.; Ziaei, A.N.; Naghedifar, M.R. Three-Dimensional Numerical Modeling of Submerged Zone of Qanat Hydraulics in Unsteady Conditions. J. Hydrol. Eng. 2018, 23, 04017063. [Google Scholar] [CrossRef]
- Daanish Mustafa, M.U.Q. Transition from Karez to Tubewell Irrigation: Development, Modernization, and Social Capital in Balochistan, Pakistan. World Dev. 2007, 35, 1796–1813. [Google Scholar] [CrossRef]
- Bachagha, N.; Wang, X.; Luo, L.; Li, L.; Khatteli, H.; Lasaponara, R. Remote sensing and GIS techniques for reconstructing the military fort system on the Roman boundary (Tunisian section) and identifying archaeological sites. Remote Sens. Environ. 2020, 236, 111418. [Google Scholar] [CrossRef]
- Breeze, P.S.; Drake, N.A.; Groucutt, H.S.; Parton, A.; Jennings, R.P.; White, T.S.; Clark-Balzan, L.; Shipton, C.; Scerri, E.M.L.; Stimpson, C.M.; et al. Remote sensing and GIS techniques for reconstructing Arabian palaeohydrology and identifying archaeological sites. Quat. Int. 2015, 382, 98–119. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Computer Vision—ECCV 2014, Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Everingham, M.; Gool, L.V.; Williams, C.K.I.; Winn, J.M.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2009, 88, 303–338. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhong, Y.; Zheng, Z.; Ma, A.; Zhang, L. RSNet: The Search for Remote Sensing Deep Neural Networks in Recognition Tasks. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2520–2534. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Monna, F.; Rolland, T.; Denaire, A.; Navarro, N.; Granjon, L.; Barbé, R.; Chateau-Smith, C. Deep learning to detect built cultural heritage from satellite imagery.—Spatial distribution and size of vernacular houses in Sumba, Indonesia. J. Cult. Herit. 2021, 52, 171–183. [Google Scholar] [CrossRef]
- Gino Caspari, P.C. Convolutional neural networks for archaeological site detection—Finding “princely” tombs. J. Archaeol. Sci. 2019, 110, 104998. [Google Scholar] [CrossRef]
- Leila Character, A.O.J.; Tim Beach, S.L.B. Archaeologic Machine Learning for Shipwreck Detection Using Lidar and Sonar. Remote Sens. 2021, 13, 1759. [Google Scholar] [CrossRef]
- Berganzo-Besga, I.; Orengo, H.A.; Lumbreras, F.; Carrero-Pazos, M.; Fonte, J.; Vilas-Estévez, B. Hybrid MSRM-Based Deep Learning and Multitemporal Sentinel 2-Based Machine Learning Algorithm Detects Near 10k Archaeological Tumuli in North-Western Iberia. Remote Sens. 2021, 13, 4181. [Google Scholar] [CrossRef]
- Trier, D.; Reksten, J.H.; Løseth, K. Automated mapping of cultural heritage in Norway from airborne lidar data using faster R-CNN. Int. J. Appl. Earth Obs. Geoinf. 2021, 95. [Google Scholar] [CrossRef]
- Calleja, J.F.; Requejo Pagés, O.; Díaz-Álvarez, N.; Peón, J.; Gutiérrez, N.; Martín-Hernández, E.; Cebada Relea, A.; Rubio Melendi, D.; Fernández Álvarez, P. Detection of buried archaeological remains with the combined use of satellite multispectral data and UAV data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 555–573. [Google Scholar] [CrossRef]
- Yang, M.; Mou, Y.; Liu, S.; Meng, Y.; Liu, Z.; Li, P.; Xiang, W.; Zhou, X.; Peng, C. Detecting and mapping tree crowns based on convolutional neural network and Google Earth images. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102764. [Google Scholar] [CrossRef]
- Davis, D.S.; Caspari, G.; Lipo, C.P.; Sanger, M.C. Deep learning reveals extent of Archaic Native American shell-ring building practices. J. Archaeol. Sci. 2021, 132, 105433. [Google Scholar] [CrossRef]
- Fang, H.; Du, P.; Wang, X. A novel unsupervised binary change detection method for VHR optical remote sensing imagery over urban areas. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102749. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, R.; Van de Voorde, T.; Chen, X.; Bourgeois, J.; Gheyle, W.; Goossens, R.; Yang, J.; Xu, W. Automatic detection of burial mounds (kurgans) in the Altai Mountains. ISPRS J. Photogramm. Remote Sens. 2021, 177, 217–237. [Google Scholar] [CrossRef]
- Maimaiti, R. Study on The Relationship Between the Karez and Turpan Oasis Ecological Environment. Master’s Thesis, Xinjiang University, Urumqi, China, 2014. [Google Scholar]
- Banks, D.; Soldal, O. Towards a policy for sustainable use of groundwater by non-governmental organisations in Afghanistan. Hydrogeol. J. 2002, 10, 377–392. [Google Scholar] [CrossRef]
- Joseph Redmon, A.F. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Jocher, G. ultralytics/yolov5. Website, 2022. Available online: https://github.com/ultralytics/yolov5 (accessed on 24 November 2021).
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer Vision—ECCV 2016, Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Wang, C.Y.; Mark Liao, H.Y.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A New Backbone that can Enhance Learning Capability of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 1571–1580. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar] [CrossRef] [Green Version]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- Gavrilescu, R.; Zet, C.; Foșalău, C.; Skoczylas, M.; Cotovanu, D. Faster R-CNN:an Approach to Real-Time Object Detection. In Proceedings of the 2018 International Conference and Exposition on Electrical And Power Engineering (EPE), Iasi, Romania, 18–19 October 2018; pp. 165–168. [Google Scholar] [CrossRef]
- Law, H.; Deng, J. CornerNet: Detecting Objects as Paired Keypoints. Int. J. Comput. Vis. 2020, 128, 642–656. [Google Scholar] [CrossRef] [Green Version]
- Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. CenterNet: Keypoint Triplets for Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 6568–6577. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 2778–2788. [Google Scholar] [CrossRef]
- Elfwing, S.; Uchibe, E.; Doya, K. Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning. Neural Netw. 2018, 107, 3–11. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. Proc. AAAI Conf. Artif. Intell. 2020, 34, 12993–13000. [Google Scholar] [CrossRef]
- Esri. ESRI ArcGIS Desktop; Esri: Redlands, CA, USA, 2013. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System. QGIS Association. 2021. Version 3.22.4. Available online: http://www.qgis.org.
- Maimaiti, A.W. From the perspective of cultural heritage management to protect Turpan water cultural heritage-Karez. CNKI 2014, 36, 133–134. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Guo, H.; Luo, L.; Wang, X. Automatic Mapping of Karez in Turpan Basin Based on Google Earth Images and the YOLOv5 Model. Remote Sens. 2022, 14, 3318. https://doi.org/10.3390/rs14143318
Li Q, Guo H, Luo L, Wang X. Automatic Mapping of Karez in Turpan Basin Based on Google Earth Images and the YOLOv5 Model. Remote Sensing. 2022; 14(14):3318. https://doi.org/10.3390/rs14143318
Chicago/Turabian StyleLi, Qian, Huadong Guo, Lei Luo, and Xinyuan Wang. 2022. "Automatic Mapping of Karez in Turpan Basin Based on Google Earth Images and the YOLOv5 Model" Remote Sensing 14, no. 14: 3318. https://doi.org/10.3390/rs14143318
APA StyleLi, Q., Guo, H., Luo, L., & Wang, X. (2022). Automatic Mapping of Karez in Turpan Basin Based on Google Earth Images and the YOLOv5 Model. Remote Sensing, 14(14), 3318. https://doi.org/10.3390/rs14143318