Lidar- and UAV-Based Vertical Observation of Spring Ozone and Particulate Matter in Nanjing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lidar System
2.2. UAV and Mobile Observation Vehicle
2.3. Data Verification
3. Results
3.1. Surface Observations
3.2. Lidar Observations
3.2.1. Vertical Profiles
3.2.2. Correlation between Ozone and Particulate Matter
3.3. UAV Observations
4. Discussion
4.1. Surface
4.2. Boundary Layer
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bu, X.; Xie, Z.; Liu, J.; Wei, L.; Wang, X.; Chen, M.; Ren, H. Global PM2.5-Attributable Health Burden from 1990 to 2017: Estimates from the Global Burden of Disease Study 2017. Environ. Res. 2021, 197, 111123. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.K.; Liu, S.; Liu, S.; Ding, D.; Xing, J. Ozone Pollution in China: Background and Transboundary Contributions to Ozone Concentration & Related Health Effects across the Country. Sci. Total Environ. 2021, 761, 144131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wei, Y.; Fang, Z. Ozone Pollution: A Major Health Hazard Worldwide. Front. Immunol. 2019, 10, 2518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Q.; Tao, S.; Ma, J.; Liu, J.; Shen, H.; Shen, G.; Guan, D.; Yun, X.; Meng, W.; Yu, X.; et al. PM2.5 Reductions in Chinese Cities from 2013 to 2019 Remain Significant despite the Inflating Effects of Meteorological Conditions. One Earth 2021, 4, 448–458. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, N.; Zhang, W.; Wilson, J.P. Changes in Long-Term PM2.5 Pollution in the Urban and Suburban Areas of China’s Three Largest Urban Agglomerations from 2000 to 2020. Remote Sens. 2022, 14, 1716. [Google Scholar] [CrossRef]
- Tao, T.; Shi, Y.; Gilbert, K.M.; Liu, X. Spatiotemporal Variations of Air Pollutants Based on Ground Observation and Emission Sources over 19 Chinese Urban Agglomerations during 2015–2019. Sci. Rep. 2022, 12, 4293. [Google Scholar] [CrossRef]
- Ma, X.; Huang, J.; Zhao, T.; Liu, C.; Zhao, K.; Xing, J.; Xiao, W. Rapid Increase in Summer Surface Ozone over the North China Plain during 2013–2019: A Side Effect of Particulate Matter Reduction Control? Atmos. Chem. Phys. 2021, 21, 1–16. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Liao, H.; Dang, R. Correlations between PM2.5 and Ozone over China and Associated Underlying Reasons. Atmosphere 2019, 10, 352. [Google Scholar] [CrossRef] [Green Version]
- Bianco, R.; Hynes, J.T. Heterogeneous Reactions Important in Atmospheric Ozone Depletion: A Theoretical Perspective. Acc. Chem. Res. 2006, 39, 159–165. [Google Scholar] [CrossRef]
- Qu, Y.; Han, Y.; Wu, Y.; Gao, P.; Wang, T. Study of PBLH and Its Correlation with Particulate Matter from One-Year Observation over Nanjing, Southeast China. Remote Sens. 2017, 9, 668. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Voulgarakis, A.; Wang, T.; Kasoar, M.; Wells, C.; Yuan, C.; Varma, S.; Mansfield, L. A Study of the Effect of Aerosols on Surface Ozone through Meteorology Feedbacks over China. Atmos. Chem. Phys. 2021, 21, 5705–5718. [Google Scholar] [CrossRef]
- Qin, M.; Hu, A.; Mao, J.; Li, X.; Sheng, L.; Sun, J.; Li, J.; Wang, X.; Zhang, Y.; Hu, J. PM2.5 and O3 Relationships Affected by the Atmospheric Oxidizing Capacity in the Yangtze River Delta, China. Sci. Total Environ. 2022, 810, 152268. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Song, T.; Tang, G.; Wang, Y. The Vertical Distribution of PM2.5 and Boundary-Layer Structure during Summer Haze in Beijing. Atmos. Environ. 2013, 74, 413–421. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, D.; Bian, Q.; Duan, Y.; Zhao, M.; Fei, D.; Xiu, G.; Fu, Q. Tethered Balloon-Based Particle Number Concentration, and Size Distribution Vertical Profiles within the Lower Troposphere of Shanghai. Atmos. Environ. 2017, 154, 141–150. [Google Scholar] [CrossRef]
- Chen, C.; Sun, Y.L.; Xu, W.Q.; Du, W.; Zhou, L.B.; Han, T.T.; Wang, Q.Q.; Fu, P.Q.; Wang, Z.F.; Gao, Z.Q.; et al. Characteristics and Sources of Submicron Aerosols above the Urban Canopy (260 m) in Beijing, China, during the 2014 APEC Summit. Atmos. Chem. Phys. 2015, 15, 12879–12895. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Sun, X.; Zhang, C.; Zhang, R.; Li, Y.; Li, H. Corrigendum to “3D Aerosol Climatology over East Asia Derived from CALIOP Observations”. Atmos. Environ. 2017, 158, 305. [Google Scholar] [CrossRef]
- Shen, L.; Jacob, D.J.; Liu, X.; Huang, G.; Li, K.; Liao, H.; Wang, T. An Evaluation of the Ability of the Ozone Monitoring Instrument (OMI) to Observe Boundary Layer Ozone Pollution across China: Application to 2005–2017 Ozone Trends. Atmos. Chem. Phys. 2019, 19, 6551–6560. [Google Scholar] [CrossRef] [Green Version]
- Hayashida, S.; Kajino, M.; Deushi, M.; Sekiyama, T.T.; Liu, X. Seasonality of the Lower Tropospheric Ozone over China Observed by the Ozone Monitoring Instrument. Atmos. Environ. 2018, 184, 244–253. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, Z.; Yang, S.; Shan, H.; Ma, X.; Zhang, H.; Zhao, S.; Liu, D.; Xie, C.; Wang, Y. Profiling the PM2.5 Mass Concentration Vertical Distribution in the Boundary Layer. Atmos. Meas. Tech. Discuss. 2015, 8, 12933–12953. [Google Scholar] [CrossRef]
- Xing, J.; Wang, J.; Mathur, R.; Wang, S.; Sarwar, G.; Pleim, J.; Hogrefe, C.; Zhang, Y.; Jiang, J.; Wong, D.C.; et al. Impacts of Aerosol Direct Effects on Tropospheric Ozone through Changes in Atmospheric Dynamics and Photolysis Rates. Atmos. Chem. Phys. 2017, 17, 9869–9883. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Zhu, Y.; Liu, B.; Li, H.; Jin, S.; Zhang, Y.; Fan, R.; Gong, W. Estimation of the Vertical Distribution of Particle Matter (PM2.5) Concentration and Its Transport Flux from Lidar Measurements Based on Machine Learning Algorithms. Atmos. Chem. Phys. 2021, 21, 17003–17016. [Google Scholar] [CrossRef]
- Zhao, M.; Fang, Z.; Yang, H.; Cheng, L.; Chen, J.; Xie, C. UAVC: A New Method for Correcting Lidar Overlap Factors Based on Unmanned Aerial Vehicle Vertical Detection. Appl. Sci. 2021, 12, 184. [Google Scholar] [CrossRef]
- Chang, C.C.; Chang, C.Y.; Wang, J.L.; Lin, M.R.; Ou-Yang, C.F.; Pan, H.H.; Chen, Y.C. A Study of Atmospheric Mixing of Trace Gases by Aerial Sampling with a Multi-Rotor Drone. Atmos. Environ. 2018, 184, 254–261. [Google Scholar] [CrossRef]
- Wu, C.; Liu, B.; Wu, D.; Yang, H.; Mao, X.; Tan, J.; Liang, Y.; Sun, J.Y.; Xia, R.; Sun, J.; et al. Vertical Profiling of Black Carbon and Ozone Using a Multicopter Unmanned Aerial Vehicle (UAV) in Urban Shenzhen of South China. Sci. Total Environ. 2021, 801, 149689. [Google Scholar] [CrossRef]
- Fernald, F.G. Analysis of Atmospheric Lidar Observations: Some Comments. Appl. Opt. 1984, 23, 652. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Su, Y.; He, S.; Zhong, M.; Cui, G. Evolution and Comparative Assessment of Ambient Air Quality Standards in China. J. Integr. Environ. Sci. 2016, 13, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Liu, X.; Zheng, J.; Tan, Q.; Feng, M.; Qu, Y.; An, J.; Cheng, N. Characteristics of One-Year Observation of VOCs, NOx, and O3 at an Urban Site in Wuhan, China. J. Environ. Sci. 2019, 79, 297–310. [Google Scholar] [CrossRef]
- Shi, Z.; Huang, L.; Li, J.; Ying, Q.; Zhang, H.; Hu, J. Sensitivity Analysis of the Surface Ozone and Fine Particulate Matter to Meteorological Parameters in China. Atmos. Chem. Phys. 2020, 20, 13455–13466. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Y.; Zhang, Y.; He, Y.; Gu, Z.; Yu, C. Impact of Air Humidity Fluctuation on the Rise of PM Mass Concentration Based on the High-Resolution Monitoring Data. Aerosol Air Qual. Res. 2017, 17, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Zawacki, M.; Baker, K.R.; Phillips, S.; Davidson, K.; Wolfe, P. Mobile Source Contributions to Ambient Ozone and Particulate Matter in 2025. Atmos. Environ. 2018, 188, 129–141. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Shao, M.; Hu, M.; Zeng, L.; Wu, Y.; Tan, T. The Impact of Aerosols on Photolysis Frequencies and Ozone Production in Beijing during the 4-Year Period 2012–2015. Atmos. Chem. Phys. 2019, 19, 9413–9429. [Google Scholar] [CrossRef] [Green Version]
- Kuang, S.; Newchurch, M.J.; Burris, J.; Wang, L.; Knupp, K.; Huang, G. Stratosphere-to-Troposphere Transport Revealed by Ground-Based Lidar and Ozonesonde at a Midlatitude Site. J. Geophys. Res. Atmos. 2012, 117, D18305. [Google Scholar] [CrossRef] [Green Version]
- Huo, Y.; Wang, Y.; Paasonen, P.; Liu, Q.; Tang, G.; Ma, Y.; Petaja, T.; Kerminen, V.-M.; Kulmala, M. Trends of Planetary Boundary Layer Height Over Urban Cities of China From 1980–2018. Front. Environ. Sci. 2021, 9, 744255. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, H.; Wu, B.; Huang, Y.; Cai, X.; Song, Y.; Li, J. Intermittent Turbulence Contributes to Vertical Dispersion of PM2.5 in the North China Plain: Cases from Tianjin. Atmos. Chem. Phys. 2018, 18, 12953–12967. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Bei, N.; Hu, B.; Liu, S.; Wang, Y.; Shen, Z.; Li, X.; Liu, L.; Wang, R.; Liu, Z.; et al. Aerosol–Photolysis Interaction Reduces Particulate Matter during Wintertime Haze Events. Proc. Natl. Acad. Sci. USA 2020, 117, 9755–9761. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, T.; Cai, Y.; Wang, S.; Chen, P.; Li, S.; Li, M.; Yuan, C.; Wang, J.; Xu, S. Influence of Atmospheric Particulate Matter on Ozone in Nanjing, China: Observational Study and Mechanistic Analysis. Adv. Atmos. Sci. 2018, 35, 1381–1395. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Transmitter | |
Wavelength | 532/266/289/316 nm |
Pulse energy | 150/100/10/8 mJ |
Pulse frequency | 10 Hz |
Pulse duration | <10 ns |
Divergence | <0.5 mrad |
Receiver | |
Diameter | 300 mm |
FOV | 0.5–2 mrad |
Filter bandwidth | 1 nm |
Data acquisition | |
Sample rate | 20 MHz |
Resolution | 12 bit |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Zhao, M.; Wang, T.; Li, S.; Li, M.; Xie, M.; Zhuang, B. Lidar- and UAV-Based Vertical Observation of Spring Ozone and Particulate Matter in Nanjing, China. Remote Sens. 2022, 14, 3051. https://doi.org/10.3390/rs14133051
Qu Y, Zhao M, Wang T, Li S, Li M, Xie M, Zhuang B. Lidar- and UAV-Based Vertical Observation of Spring Ozone and Particulate Matter in Nanjing, China. Remote Sensing. 2022; 14(13):3051. https://doi.org/10.3390/rs14133051
Chicago/Turabian StyleQu, Yawei, Ming Zhao, Tijian Wang, Shu Li, Mengmeng Li, Min Xie, and Bingliang Zhuang. 2022. "Lidar- and UAV-Based Vertical Observation of Spring Ozone and Particulate Matter in Nanjing, China" Remote Sensing 14, no. 13: 3051. https://doi.org/10.3390/rs14133051
APA StyleQu, Y., Zhao, M., Wang, T., Li, S., Li, M., Xie, M., & Zhuang, B. (2022). Lidar- and UAV-Based Vertical Observation of Spring Ozone and Particulate Matter in Nanjing, China. Remote Sensing, 14(13), 3051. https://doi.org/10.3390/rs14133051