Application of Sentinel-1 and-2 Images in Measuring the Deformation of Kuh-e-Namak (Dashti) Namakier, Iran
Abstract
1. Introduction
2. Background
2.1. Geologic Setting
2.2. Salt Diapirs Deformation
3. Materials and Methods
3.1. Data
3.1.1. Optical Data
3.1.2. SAR Data
3.1.3. Meteorological Data
3.2. Methods
3.2.1. COSI-Corr
3.2.2. SBAS-InSAR
4. Results
4.1. Deformation Measurements of COSI-Corr
4.2. Deformation Measurements of SBAS-InSAR
4.3. Kinematics of Kuh-e-Namak (Dashti) Namakier
5. Discussion
5.1. Relationship between Salt Kinematics and Weather Conditions
5.2. Relationship between Salt Kinematics and Rock Salt Types
5.3. Comparison of COSI-Corr and SBAS-InSAR Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seni, S.; Geology, B.O.E.; Jackson, M.; Bramson, R.; Burks, R.; Conti, R.; Ghazi, S.; Lovell, S.; Richter, B.; Smith, J.; et al. Sedimentary Record of Cretaceous and Tertiary Salt Movement, East. Texas Basin: Times, Rates, and Volumes of Salt Flow and Their Implications for Nuclear Waste Isolation and Petroleum Exploration; The University of Texas, Bureau of Economic Geology: Austin, TX, USA, 1984. [Google Scholar]
- Jenyon, M.K. Salt Tectonics; Elsevier Applied Science Publishers: London, UK, 1986; ISBN 1851660151. [Google Scholar]
- Thoms, R.L.; Gehle, R.M. A Brief History of Salt Cavern Use; A brief History of Salt Cavern Use (keynote paper). In Proceedings of the 8th World Salt Symposium, The Hague, The Netherlands, 7–11 May 2020; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Talbot, C.J.; Alavi, M. The past of a future syntaxis across the Zagros. Geol. Soc. Lond. Spec. Publ. 1996, 100, 89–109. [Google Scholar] [CrossRef]
- Alsouki, M.; Riahi, M.A.; Yassaghi, A. Seismic imaging of sub-circular salt-related structures: Evidence for passive diapirism in the Straits of Hormuz, Persian Gulf. Pet. Geosci. 2011, 17, 101–107. [Google Scholar] [CrossRef]
- Talbot, C.; Aftabi, P. Geology and models of salt extrusion at Qum Kuh, central Iran. J. Geol. Soc. 2004, 161, 321–334. [Google Scholar] [CrossRef]
- Hudec, M.R.; Jackson, M.P.A. Advance of allochthonous salt sheets in passive margins and orogens. AAPG Bull. 2006, 90, 1535–1564. [Google Scholar] [CrossRef]
- Jackson, M.; Cornelius, R.R.; Craig, C.H.; Talbot, C.; Gansser, A.; Stöcklin, J. Salt diapirs of the Great Kavir, Central Iran. In GSA Memoirs; Geological Society of America: Boulder, CO, USA, 1990; Volume 177, pp. 1–150. [Google Scholar]
- Talbot, C. Fold trains in a glacier of salt in southern Iran. J. Struct. Geol. 1979, 1, 5–18. [Google Scholar] [CrossRef]
- Talbot, C.J.; Rogers, E.A. Seasonal movements in a salt glacier in Iran. Science 1980, 208, 395–397. [Google Scholar] [CrossRef] [PubMed]
- Talbot, C.J.; Jarvis, R.J. Dynamics, budget and age of an active salt extrusion. Geol. Föreningen Stockh. Förhandlingar 1983, 105, 377–378. [Google Scholar] [CrossRef]
- Závada, P.; Desbois, G.; Urai, J.L.; Schullman, K.; Rahmati, M.; Lexa, O.; Wollenberg, U.; Schulmann, K. Impact of solid second phases on deformation mechanisms of naturally deformed salt rocks (Kuh-e-Namak, Dashti, Iran) and rheological stratification of the Hormuz salt formation. J. Struct. Geol. 2015, 74, 117–144. [Google Scholar] [CrossRef]
- Talbot, C.J. Salt extrusion at Kuh-e-Jahani, Iran, from June 1994 to November 1997. Geol. Soc. Lond. Spec. Publ. 2000, 174, 93–110. [Google Scholar] [CrossRef]
- Baikpour, S.; Zulauf, G.; Dehghani, M.; Bahroudi, A. InSAR maps and time series observations of surface displacements of rock salt extruded near Garmsar, northern Iran. J. Geol. Soc. 2010, 167, 171–181. [Google Scholar] [CrossRef]
- Aftabi, P.; Roustaie, M.; Alsop, G.; Talbot, C.J. InSAR mapping and modelling of an active Iranian salt extrusion. J. Geol. Soc. 2010, 167, 155–170. [Google Scholar] [CrossRef]
- Zebker, H.A.; Goldstein, R.M. Topographic mapping from interferometric synthetic aperture radar observations. J. Geophys. Res. Solid Earth 1986, 91, 4993–4999. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. Space Phys. 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating de-formations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Barnhart, W.D.; Lohman, R.B. Regional trends in active diapirism revealed by mountain range-scale InSAR time series. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Abdolmaleki, N.; Motagh, M.; Bahroudi, A.; Sharifi, M.A.; Haghighi, M.H. Using Envisat InSAR time-series to investigate the surface kinematics of an active salt extrusion near Qum, Iran. J. Geodyn. 2014, 81, 56–66. [Google Scholar] [CrossRef]
- Colón, C.; Webb, A.A.G.; Lasserre, C.; Doin, M.-P.; Renard, F.; Lohman, R.; Li, J.; Baudoin, P.F. The variety of subaerial active salt deformations in the Kuqa fold-thrust belt (China) constrained by InSAR. Earth Planet. Sci. Lett. 2016, 450, 83–95. [Google Scholar] [CrossRef]
- Roosta, H.; Jalalifar, H.; Nasab, S.K.; Ranjbar, M. Surface deformation over the buried Nasr Abad salt diapir, Central Iran using interferometric synthetic aperture radar data. Int. J. Remote Sens. 2019, 40, 8322–8341. [Google Scholar] [CrossRef]
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.-P. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef]
- Heid, T.; Kääb, A. Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sens. Environ. 2012, 118, 339–355. [Google Scholar] [CrossRef]
- Singh, K.K.; Singh, D.K.; Negi, H.S.; Kulkarni, A.V.; Gusain, H.S.; Ganju, A.; Raj, K.B.G. Temporal change and flow velocity estimation of Patseo Glacier, Western Himalaya, India. Curr. Sci. 2018, 114, 776–784. [Google Scholar] [CrossRef]
- Stumpf, A.; Malet, J.-P.; Allemand, P.; Ulrich, P. Surface reconstruction and landslide displacement measurements with Pléiades satellite images. ISPRS J. Photogramm. Remote Sens. 2014, 95, 1–12. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; De Jong, S.M. Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sens. 2015, 7, 1736–1757. [Google Scholar] [CrossRef]
- Vermeesch, P.; Drake, N. Remotely sensed dune celerity and sand flux measurements of the world’s fastest barchans (Bodélé, Chad). Geophys. Res. Lett. 2008, 35, L24404. [Google Scholar] [CrossRef]
- Baird, T.; Bristow, C.S.; Vermeesch, P. Measuring sand dune migration rates with COSI-Corr and Landsat: Opportunities and challenges. Remote Sens. 2019, 11, 2423. [Google Scholar] [CrossRef]
- Barisin, I.; Leprince, S.; Parsons, B.; Wright, T. Surface displacements in the September 2005 Afar rifting event from satellite image matching: Asymmetric uplift and faulting. Geophys. Res. Lett. 2009, 36, 420–439. [Google Scholar] [CrossRef]
- Milliner, C.W.D.; Dolan, J.F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.; Sammis, C.G. Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 Landers earthquake. Geochem. Geophys. Geosystems 2015, 16, 1577–1598. [Google Scholar] [CrossRef]
- Edgell, H.S. Salt tectonism in the Persian Gulf Basin. Geol. Soc. Lond. Spec. Publ. 1996, 100, 129–151. [Google Scholar] [CrossRef]
- Kent, P.E. The emergent Hormuz salt plugs of Southern Iran. J. Pet. Geol. 1979, 2, 117–144. [Google Scholar] [CrossRef]
- Mohr, M.; Warren, J.K.; Kukla, P.A.; Urai, J.L.; Irmen, A. Subsurface seismic record of salt glaciers in an extensional intracontinental setting (Late Triassic of northwestern Germany). Geology 2007, 35, 963. [Google Scholar] [CrossRef]
- Talbot, C.J.; Pohjola, V. Subaerial salt extrusions in Iran as analogues of ice sheets, streams and glaciers. Earth-Sci. Rev. 2009, 97, 155–183. [Google Scholar] [CrossRef]
- Talbot, C.J. Extrusions of Hormuz salt in Iran. Geol. Soc. Lond. Spec. Publ. 1998, 143, 315–334. [Google Scholar] [CrossRef]
- Ahrens, T.J. Rock Physics & Phase Relations: A Handbook of Physical Constants; AGU Reference Shelf 3; American Geophysical Union: Washington, DC, USA, 1995; ISBN 0875908535. [Google Scholar]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus sentinel-2A calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Scherler, D.; Leprince, S.; Strecker, M. Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment. Remote Sens. Environ. 2008, 112, 3806–3819. [Google Scholar] [CrossRef]
- Ali, E.; Xu, W.; Ding, X. Improved optical image matching time series inversion approach for monitoring dune migration in North Sinai Sand Sea: Algorithm procedure, application, and validation. ISPRS J. Photogramm. Remote Sens. 2020, 164, 106–124. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Wang, Y.; Ma, C.; Ma, Y. Retrospective deformation of the Baige landslide using optical remote sensing images. Landslides 2019, 17, 659–668. [Google Scholar] [CrossRef]
- Zhou, L.; Guo, J.; Hu, J.; Li, J.; Xu, Y.; Pan, Y.; Shi, M. Wuhan surface subsidence analysis in 2015–2016 based on sentinel-1a data by SBAS-inSAR. Remote Sens. 2017, 9, 982. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Gaber, A.; Darwish, N.; Koch, M. Minimizing the residual topography effect on interferograms to improve DInSAR results: Estimating land subsidence in Port-Said City, Egypt. Remote Sens. 2017, 9, 752. [Google Scholar] [CrossRef]
- Pepe, A.; Berardino, P.; Bonano, M.; Euillades, L.D.; Lanari, R.; Sansosti, E. SBAS-based satellite orbit correction for the generation of DInSAR time-series: Application to RADARSAT-1 Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 5150–5165. [Google Scholar] [CrossRef]
- Kuo, Y.; Yang, T.; Huang, G.-W. The use of grey relational analysis in solving multiple attribute decision-making problems. Comput. Ind. Eng. 2008, 55, 80–93. [Google Scholar] [CrossRef]
Sensor | Acquisition Dates (YYMMDD) | Orbit Number | Cloud Cover (Percentage) | Sun Zenith Angle (Degree) | Sun Azimuth Angle (Degree) |
---|---|---|---|---|---|
S2A_MSIL1C | 22 October 2016 | 106 | 0.007 | 41.947 | 159.039 |
S2A_MSIL1C | 31 December 2016 | 106 | 0.000 | 54.580 | 158.671 |
S2A_MSIL1C | 1 March 2017 | 106 | 0.153 | 41.277 | 147.256 |
S2A_MSIL1C | 17 October 2017 | 106 | 0.311 | 40.242 | 157.793 |
S2B_MSIL1C | 31 December 2017 | 106 | 4.257 | 54.594 | 158.692 |
S2B_MSIL1C | 19 February 2018 | 106 | 0.357 | 44.797 | 149.363 |
S2B_MSIL1C | 17 October 2018 | 106 | 1.278 | 40.166 | 157.714 |
S2B_MSIL1C | 24 February 2019 | 106 | 0.049 | 43.189 | 148.427 |
S2B_MSIL1C | 22 October 2019 | 106 | 0.012 | 41.703 | 158.914 |
S2A_MSIL1C | 26 December 2019 | 106 | 0.370 | 54.656 | 159.550 |
Data | Parameters | Description |
---|---|---|
Sentinel-1A | Type | SLC (Single Look Complex) |
Image Mode | IW (Interferometric Wide) | |
Band | C | |
Track number | 28 | |
Polarization | VV (Vertical Polarization) | |
Range Resolution (m) | 5 | |
Azimuth Resolution (m) | 20 | |
SRTM | Resolution (m) | 30 |
Pre-Image (YYYYMMDD) | Post-Image (YYYYMMDD) | Sun Zenith Angle Differences (Degrees) | East/West Displacement (Meters) | North/South DISPLACEMENT (Meters) | SNR | |||
---|---|---|---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | |||
22 October 2016 | 1 March 2017 | 0.670 | −1.417 | 0.393 | 1.411 | 0.350 | 0.9959 | 0.0015 |
1 March 2017 | 17 October 2017 | 1.035 | 1.471 | 0.369 | 1.191 | 0.336 | 0.9957 | 0.0015 |
17 October 2017 | 19 February 2018 | 4.555 | −2.301 | 0.468 | −2.874 | 0.373 | 0.9948 | 0.0017 |
19 February 2018 | 17 October 2018 | 4.631 | −3.814 | 0.434 | 0.389 | 0.301 | 0.9950 | 0.0018 |
17 October 2018 | 24 February 2019 | 3.023 | 3.602 | 0.421 | −1.404 | 0.323 | 0.9947 | 0.0021 |
24 February 2019 | 22 October 2019 | 1.486 | −1.687 | 0.456 | 0.268 | 0.265 | 0.9955 | 0.0016 |
31 December 2016 | 31 December 2017 | 0.014 | −0.149 | 0.256 | −0.580 | 0.174 | 0.9977 | 0.0008 |
31 December 2017 | 26 December 2019 | 0.076 | −2.279 | 0.187 | 2.486 | 0.135 | 0.9978 | 0.0007 |
Correlation Pair (YYYYMMDD) | Accumulated Precipitation (mm) | Average Temperature (°C) | Displacement (m) | Velocity (m/d) |
---|---|---|---|---|
22 October 2016–1 March 2017 | 377.190 | 21.34 | 21.03 | 0.162 |
1 March 2017–17 October 2017 | 55.626 | 31.94 | 19.71 | 0.086 |
17 October 2017–19 February 2018 | 113.538 | 22.13 | 14.49 | 0.116 |
19 February 2018–17 October 2018 | 51.308 | 31.26 | 19.40 | 0.081 |
17 October 2018–24 February 2019 | 159.004 | 21.69 | 20.00 | 0.154 |
24 February 2019–22 October 2019 | 66.294 | 30.91 | 18.29 | 0.076 |
31 December 2016–31 December 2017 | 471.678 | 28.04 | 19.89 | 0.054 |
31 December 2016–26 December 2019 | 887.730 | 27.97 | 19.38 | 0.018 |
Correlation Pair (YYYYMMDD) | Maximum Displacement (m) | |||||
---|---|---|---|---|---|---|
Black | Magenta | White | Gary | “Clean” | “Dirty” | |
22 October 2016–1 March 2017 | 21.03 | 4.00 | 3.44 | 3.46 | 3.62 | 19.78 |
1 March 2017–17 October 2017 | 11.00 | 4.77 | 3.23 | 19.71 | 3.84 | 19.19 |
17 October 2017–19 February 2018 | 14.49 | 3.52 | 4.81 | 4.20 | 2.86 | 5.99 |
19 February 2018–17 October 2018 | 17.80 | 5.09 | 4.14 | 4.32 | 7.34 | 5.62 |
17 October 2018–24 February 2019 | 17.88 | 4.91 | 3.48 | 20.01 | 6.92 | 5.58 |
24 February 2019 –22 October 2019 | 18.29 | 4.48 | 2.54 | 4.10 | 2.97 | 5.01 |
31 December 2016–31 December 2017 | 3.34 | 2.11 | 2.26 | 4.36 | 3.95 | 19.89 |
31 December 2016–26 December 2019 | 19.38 | 3.31 | 17.99 | 4.31 | 4.07 | 19.10 |
Number of Points | Location | Average Grey Relational Degree between Average Temperature and Displacement | Average Grey Relational Degree between Accumulated Precipitation and Displacement |
---|---|---|---|
2000 | Flank | 0.6026 | 0.6932 |
2000 | Dome | 0.6023 | 0.7030 |
Rock Salt Types | Average Grey Relational Degree | |
---|---|---|
Precipitation | Temperature | |
Black | 0.6756 | 0.5935 |
Magenta | 0.6789 | 0.5652 |
White | 0.6732 | 0.5725 |
Gray | 0.7153 | 0.6078 |
“Clean” | 0.6794 | 0.5831 |
“Dirty” | 0.6957 | 0.5976 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Jiang, Q.; Shi, C.; Xu, X.; Gong, Y.; Xi, J.; Liu, W.; Liu, B. Application of Sentinel-1 and-2 Images in Measuring the Deformation of Kuh-e-Namak (Dashti) Namakier, Iran. Remote Sens. 2021, 13, 785. https://doi.org/10.3390/rs13040785
Zhang S, Jiang Q, Shi C, Xu X, Gong Y, Xi J, Liu W, Liu B. Application of Sentinel-1 and-2 Images in Measuring the Deformation of Kuh-e-Namak (Dashti) Namakier, Iran. Remote Sensing. 2021; 13(4):785. https://doi.org/10.3390/rs13040785
Chicago/Turabian StyleZhang, Sen, Qigang Jiang, Chao Shi, Xitong Xu, Yundi Gong, Jing Xi, Wenxuan Liu, and Bin Liu. 2021. "Application of Sentinel-1 and-2 Images in Measuring the Deformation of Kuh-e-Namak (Dashti) Namakier, Iran" Remote Sensing 13, no. 4: 785. https://doi.org/10.3390/rs13040785
APA StyleZhang, S., Jiang, Q., Shi, C., Xu, X., Gong, Y., Xi, J., Liu, W., & Liu, B. (2021). Application of Sentinel-1 and-2 Images in Measuring the Deformation of Kuh-e-Namak (Dashti) Namakier, Iran. Remote Sensing, 13(4), 785. https://doi.org/10.3390/rs13040785