Multilabel Image Classification with Deep Transfer Learning for Decision Support on Wildfire Response
Abstract
:1. Introduction
- Does the proposed CNN-based multilabel image classification model for wildfire response decision support show a convincing performance?
- Are transfer learning and data augmentation methods, which are used to overcome data scarcity, effective in increasing the performance of the proposed MLC model?
- Images taken from drones are usually collected at a high resolution. However, the CNN-based result is output as a low-resolution image (224 × 224). How can the gap between these two resolutions be addressed?
- How can the models be used to support forest fire response decision making?
2. Related Work
3. Materials and Methods
3.1. Data Augmentation
3.2. Transfer Learning
3.3. Multilabel Classification Loss
3.4. Proposed Network
3.5. Performance Metrics
3.6. Class Activation Mapping
4. Results
4.1. Dataset
4.2. Data Partition
4.3. Performance Analysis
4.4. Visualization
4.5. Application
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goss, M.; Swain, D.L.; Abatzoglou, J.T.; Sarhadi, A.; Kolden, C.A.; Williams, A.P.; Diffenbaugh, N.S. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environ. Res. Lett. 2020, 15, 094016. [Google Scholar] [CrossRef] [Green Version]
- Guggenheim, D. An Inconvenient Truth; Hollywood Paramount Home Entertainment: Hollywood, CA, USA, 2006. [Google Scholar]
- Roldán-Gómez, J.J.; González-Gironda, E.; Barrientos, A. A survey on robotic technologies for forest firefighting: Applying drone swarms to improve firefighters’ efficiency and safety. Appl. Sci. 2021, 11, 363. [Google Scholar] [CrossRef]
- Chaudhuri, N.; Bose, I. Exploring the role of deep neural networks for post-disaster decision support. Decis. Support Syst. 2020, 130, 113234. [Google Scholar] [CrossRef]
- Muhammad, K.; Ahmad, J.; Baik, S.W. Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing 2017, 288, 30–42. [Google Scholar] [CrossRef]
- Akhloufi, M.A.; Castro, N.A.; Couturier, A. UAVs for wildland fires. In Proceedings of the SPIE 10643, Autonomous Systems: Sensors, Vehicles, Security, and the Internet of Everything. International Society for Optics and Photonics, Orlando, FL, USA, 15–19 April 2018; Volume 10643. [Google Scholar]
- Wang, Y.; Dang, L.; Ren, J. Forest fire image recognition based on convolutional neural network. J. Algorithms Comput. Technol. 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Gong, T.; Liu, B.; Chu, Q.; Yu, N. Using multi-label classification to improve object detection. Neurocomputing 2019, 370, 174–185. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, W.; Wen, S.; Yang, Y. Multi-label image classification by feature attention network. IEEE Access 2019, 7, 98005–98013. [Google Scholar] [CrossRef]
- Hanashima, M.; Sato, R.; Usuda, Y. The standardized disaster-information products for disaster management: Concept and formulation. J. Disaster Res. 2017, 12, 1015–1027. [Google Scholar] [CrossRef]
- Kwak, J.; Bhang, K.; Kim, M.-I. Developing a decision making support information checklist based on analyses of two large-scale forest fire cases. Crisis Emerg. Manag. Theory Praxis 2020, 16, 21–30. [Google Scholar] [CrossRef]
- Li, T.; Zhao, E.; Zhang, J.; Hu, C. Detection of wildfire smoke images based on a densely dilated convolutional network. Electronics 2019, 8, 1131. [Google Scholar] [CrossRef] [Green Version]
- Namozov, A.; Cho, Y.I. An efficient deep learning algorithm for fire and smoke detection with limited data. Adv. Electr. Comput. Eng. 2018, 18, 121–129. [Google Scholar] [CrossRef]
- Taylor, M.E.; Stone, P. Transfer learning for reinforcement learning domains: A survey. J. Mach. Learn. Res. 2009, 10, 1633–1685. [Google Scholar]
- Wybo, J.-L. FMIS: A decision support system for forest fire prevention and fighting. IEEE Trans. Eng. Manag. 1998, 45, 127–131. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Pattern Recognition and Computer Vision 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Santiago, J.S.S.; Manuela Jr, W.S.; Tan, M.L.L.; Sañez, S.K.; Tong, A.Z.U. Of timelines and timeliness: Lessons from typhoon haiyan in early disaster response. Disasters 2016, 16, 644–667. [Google Scholar] [CrossRef]
- Jung, D.; Tuan, V.T.; Tran, D.Q.; Park, M.; Park, S. Conceptual framework of an intelligent decision support system for smart city disaster management. Appl. Sci. 2020, 10, 666. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A review on early forest fire detection systems using optical remote sensing. Sensors 2020, 20, 6442. [Google Scholar] [CrossRef]
- Aslan, Y. A Framework for the Use of Wireless Sensor Networks in the Forest Fire Detection and Monitoring. Master’s Thesis, Department of Computer Engineering, The Institute of Engineering and Science Bilkent University, Ankara, Turkey, 2010. [Google Scholar]
- Go, B.-C. IOT technology for forest fire disaster monitoring. Broadcast. Media Mag. 2015, 20, 91–98. [Google Scholar]
- Christensen, B.R. Use of UAV or remotely piloted aircraft and forward-looking infrared in forest, rural and wildland fire management: Evaluation using simple economic analysis. N. Z. J. For. Sci. 2015, 45, 16. [Google Scholar] [CrossRef] [Green Version]
- Chi, R.; Lu, Z.M.; Ji, Q.G. Real-time multi-feature based fire flame detection in video. IET Image Process. 2016, 11, 31–37. [Google Scholar] [CrossRef]
- Park, M.; Tran, D.Q.; Jung, D.; Park, S. Wildfire-detection method using DenseNet and CycleGAN data augmentation-based remote camera imagery. Remote Sens. 2020, 12, 3715. [Google Scholar] [CrossRef]
- Bedo, M.V.N.; De Oliveira, W.D.; Cazzolato, M.T.; Costa, A.F.; Blanco, G.; Rodrigues, J.F.; Traina, A.J.; Traina, C. Fire detection from social media images by means of instance-based learning. In Springer International Conference on Enterprise Information Systems; Springer: Berlin/Heidelberg, Germany, 2015; pp. 23–44. [Google Scholar]
- Sharma, J.; Granmo, O.; Goodwin, M.; Fidje, J.T. Deep Convolutional Neural Networks for Fire Detection in Images. In Proceedings of the International Conference on Engineering Applications of Neural Networks, EANN2017, Athens, Greece, 25–27 August 2017. [Google Scholar]
- Toulouse, T.; Rossi, L.; Campana, A.; Celik, T.; Akhloufi, M.A. Computer vision for wildfire research: An evolving image dataset for processing and analysis. Fire Saf. J. 2017, 92, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Sousa, M.J.; Moutinho, A.; Almeida, M. Wildfire detection using transfer learning on augmented datasets. Expert Syst. Appl. 2020, 142, 112975. [Google Scholar] [CrossRef]
- Muhammad, K.; Ahmad, J.; Mehmood, I.; Rho, S. Convolutional neural networks based fire detection in surveillance videos. IEEE Access 2018, 6, 18174–18183. [Google Scholar] [CrossRef]
- Mikołajczyk, A.; Grochowski, M. Data Augmentation for Improving Deep Learning in Image Classification Problem. In Proceedings of the International Interdisciplinary PhD Workshop (IIPhDW), Swinoujście, Poland, 9–12 May 2018; pp. 117–122. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Mihalkova, L.; Mooney, R.J. Transfer learning from minimal target data by mapping across relational domains. In Proceedings of the 21st International Jont Conference on Artifical Intelligence (IJCAI’09); Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2009; pp. 1163–1168. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Li, X.; Chen, S.; Hu, X.; Yang, J. Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2682–2690. [Google Scholar]
- Pereira, R.B.; Plastino, A.; Zadrozny, B.; Merschmann, L.H. Correlation analysis of performance measures for multi-label classification. Inf. Process. Manag. 2018, 54, 359–369. [Google Scholar] [CrossRef]
- Zhang, M.L.; Zhou, Z.H. A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 2014, 26, 1819–1837. [Google Scholar] [CrossRef]
- Zhu, F.; Li, H.; Ouyang, W.; Yu, N.; Wang, X. Learning Spatial Regularization with Image-Level Supervisions for Multi-Label Image Classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5513–5522. [Google Scholar]
- Schapire, R.E.; Singer, Y. Boostexter: A boosting-based system for text categorization. Mach. Learn. 2000, 39, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-Cam: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. PyTorch: An imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 8024–8035. [Google Scholar]
- Zhou, H.; Sattler, T.; Jacobs, D.W. Evaluating local features for day-night matching. In Springer European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 724–736. [Google Scholar]
- Jeong, C.; Jang, S.-E.; Na, S.; Kim, J. Korean tourist spot multi-modal dataset for deep learning applications. Data 2019, 4, 139. [Google Scholar] [CrossRef] [Green Version]
- Sabottke, C.F.; Spieler, B.M. The effect of image resolution on deep learning in radiography. Radiol. Artif. Intell. 2020, 2, e190015. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Shi, Y.; Gao, Z. Wildfire smoke detection based on local extremal region segmentation and surveillance. Fire Saf. J. 2016, 85, 50–58. [Google Scholar] [CrossRef]
Label | WS | WSF | WSP | WSBP | WSB | WSFB | WSFP | WSFBP | N | NB | NP | NBP |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Original | 585 | 419 | 176 | 103 | 82 | 84 | 87 | 67 | 1567 | 331 | 210 | 89 |
After data pre-processing (augmentation and partition) | ||||||||||||
Train | 1464 | 996 | 432 | 240 | 234 | 150 | 216 | 138 | 3726 | 786 | 462 | 276 |
Test | 341 | 253 | 104 | 63 | 43 | 59 | 51 | 44 | 946 | 200 | 133 | 43 |
Augmentation Method | Original Data | Brightness | Flip | Rotation | Total |
---|---|---|---|---|---|
Images | 1520 | 3040 | 1520 | 3040 | 9120 |
VGG-16 | ResNet-50 | DenseNet-121 | |
---|---|---|---|
Mini batch size | 48 | 57 | 48 |
Iteration | 171 | 144 | 171 |
Number of training epoch | 100 | 100 | 100 |
Learning rate | 0.001 | 0.001 | 0.001 |
Optimizer | Adam | Adam | Adam |
VGG-16 | ResNet-50 | DenseNet-121 | |
---|---|---|---|
PC | 0.9435 ± 0.0308 | 0.9640 ± 0.0399 | 0.9899 ± 0.0138 |
RC | 0.9177 ± 0.0338 | 0.9221 ± 0.0304 | 0.9661 ± 0.0293 |
F1C | 0.9265 ± 0.0212 | 0.9368 ± 0.0371 | 0.9769 ± 0.0215 |
PO | 0.9635 ± 0.0225 | 0.9655 ± 0.0462 | 0.9914 ± 0.0110 |
RO | 0.9560 ± 0.0178 | 0.9485 ± 0.0329 | 0.9783 ± 0.0214 |
F1O | 0.9595 ± 0.0123 | 0.9555 ± 0.0390 | 0.9847 ± 0.0159 |
mAP | 0.8811 ± 0.0312 | 0.9056 ± 0.0529 | 0.9629 ± 0.0327 |
HL | 0.0025 ± 0.0008 | 0.0017 ± 0.0009 | 0.0009 ± 0.0009 |
Wildfire | Smoke | Flame | Non-Fire | Building | Pedestrian | |
---|---|---|---|---|---|---|
VGG-16 | 98.70 ± 00.48 | 98.72 ± 00.47 | 98.71 ± 00.46 | 95.68 ± 02.65 | 91.66 ± 00.53 | 87.54 ± 02.61 |
ResNet-50 | 98.37 ± 01.25 | 98.36 ± 01.25 | 98.35 ± 01.25 | 97.60 ± 01.70 | 92.55 ± 03.64 | 92.92 ± 03.67 |
DenseNet-121 | 99.01 ± 01.38 | 99.00 ± 01.40 | 99.01 ± 01.40 | 98.29 ± 01.95 | 96.65 ± 02.75 | 96.44 ± 03.65 |
Strategies to Overcome Data Limitations | F1C | F1O | HL |
---|---|---|---|
Transfer Learning and Data Augmentation | 0.9769 | 0.9847 | 0.0093 |
Transfer Learning | 0.8610 | 0.9146 | 0.0505 |
Data Augmentation | 0.9024 | 0.9381 | 0.0379 |
None | 0.7951 | 0.8634 | 0.0845 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.; Tran, D.Q.; Lee, S.; Park, S. Multilabel Image Classification with Deep Transfer Learning for Decision Support on Wildfire Response. Remote Sens. 2021, 13, 3985. https://doi.org/10.3390/rs13193985
Park M, Tran DQ, Lee S, Park S. Multilabel Image Classification with Deep Transfer Learning for Decision Support on Wildfire Response. Remote Sensing. 2021; 13(19):3985. https://doi.org/10.3390/rs13193985
Chicago/Turabian StylePark, Minsoo, Dai Quoc Tran, Seungsoo Lee, and Seunghee Park. 2021. "Multilabel Image Classification with Deep Transfer Learning for Decision Support on Wildfire Response" Remote Sensing 13, no. 19: 3985. https://doi.org/10.3390/rs13193985
APA StylePark, M., Tran, D. Q., Lee, S., & Park, S. (2021). Multilabel Image Classification with Deep Transfer Learning for Decision Support on Wildfire Response. Remote Sensing, 13(19), 3985. https://doi.org/10.3390/rs13193985