Water Mixing Conditions Influence Sentinel-2 Monitoring of Chlorophyll Content in Monomictic Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Digital Data Collection and Processing
2.3. In Situ Data
2.4. Statistical Analysis
3. Results
3.1. In Situ Data
3.2. Indices Performance Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Lake Bracciano | Lake Albano | Lake Nemi | |
---|---|---|---|
Location (Lat., Lon.) | 42°07′16″N 12°13′55″E | 41°45′0″N 12°39′54″E | 41°42′44″N 12°42′09″E |
Max. depth (m) | 165 | 175 | 27.5 |
Mean elevation (m a.s.l.) | 164 | 293 | 316 |
Surface area (km2) | 57.5 | 6.0 | 1.6 |
Volume (106 m3) | 5050 | 464 | 26.5 |
Renewal time (yr) | 137 | 47.6 | 15 |
Outflows | Arrone river (currently dry in its first stretch), Paul aqueduct | No natural outlets | No natural outlets |
Appendix B
R2m | R2c |
---|---|
0.326 | 0.476 |
Appendix C
References
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Brönmark, C.; Hansson, L.A. Environmental issues in lakes and ponds: Current state and perspectives. Environ. Conserv. 2002, 29, 290–307. [Google Scholar] [CrossRef] [Green Version]
- Duker, L.; Borre, L. Biodiversity Conservation of the World’s Lakes: A Preliminary Framework for Identifying Priorities. Available online: www.worldlakes.org/uploads/report2.pdf (accessed on 5 June 2021).
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Padisák, J.; Borics, G.; Grigorszky, I.; Soróczki-Pintér, É. Use of phytoplankton assemblages for monitoring ecological status of lakes within the water framework directive: The assemblage index. Hydrobiologia 2006, 553, 1–14. [Google Scholar] [CrossRef]
- Garmendia, M.; Borja, Á.; Franco, J.; Revilla, M. Phytoplankton composition indicators for the assessment of eutrophication in marine waters: Present state and challenges within the European directives. Mar. Pollut. Bull. 2013, 66, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Brönmark, C.; Hansson, L.-A. The Biology of Lakes and Ponds; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Chen, Q.; Zhang, Y.; Ekroos, A.; Hallikainen, M. The role of remote sensing technology in the EU water framework directive (WFD). Environ. Sci. Policy 2004, 7, 267–276. [Google Scholar] [CrossRef]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bresciani, M.; Cazzaniga, I.; Austoni, M.; Sforzi, T.; Buzzi, F.; Morabito, G.; Giardino, C. Mapping phytoplankton blooms in deep subalpine lakes from Sentinel-2A and Landsat-8. Hydrobiologia 2018, 824, 197–214. [Google Scholar] [CrossRef] [Green Version]
- Dörnhöfer, K.; Göritz, A.; Gege, P.; Pflug, B.; Oppelt, N. Water constituents andwater depth retrieval from Sentinel-2A-A first evaluation in an oligotrophic lake. Remote Sens. 2016, 8, 941. [Google Scholar] [CrossRef] [Green Version]
- Grendaitė, D.; Stonevičius, E.; Karosienė, J.; Savadova, K.; Kasperovičienė, J. Chlorophyll-a concentration retrieval in eutrophic lakes in Lithuania from Sentinel-2 data. Geol. Geogr. 2018, 4. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Shi, T.; Hu, S.; Wu, G.; Zhou, Q. Application of sentinel 2 MSI images to retrieve suspended particulate matter concentrations in Poyang Lake. Remote Sens. 2017, 9, 761. [Google Scholar] [CrossRef] [Green Version]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First experiences in mapping lakewater quality parameters with sentinel-2 MSI imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- D’Odorico, P.; Gonsamo, A.; Damm, A.; Schaepman, M.E. Experimental evaluation of sentinel-2 spectral response functions for NDVI time-series continuity. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1336–1348. [Google Scholar] [CrossRef]
- Kutser, T.; Paavel, B.; Verpoorter, C.; Ligi, M.; Soomets, T.; Toming, K.; Casal, G. Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters. Remote Sens. 2016, 8, 497. [Google Scholar] [CrossRef]
- Beck, R.; Zhan, S.; Liu, H.; Tong, S.; Yang, B.; Xu, M.; Ye, Z.; Huang, Y.; Shu, S.; Wu, Q.; et al. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. Remote Sens. Environ. 2016, 178, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Gordon, H.R.; Morel, A.Y. Remote assessment of ocean color for interpretation of satellite visible imagery a review. In Lecture Notes on Coastal and Estuarine Studies; Springer: New York, NY, USA, 1983; ISBN 0387909230. [Google Scholar]
- Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J. Geophys. Res. 1988, 93, 10749. [Google Scholar] [CrossRef] [Green Version]
- Ha, N.T.T.; Thao, N.T.P.; Koike, K.; Nhuan, M.T. Selecting the best band ratio to estimate chlorophyll-a concentration in a tropical freshwater lake using sentinel 2A images from a case study of Lake Ba Be (Northern Vietnam). ISPRS Int. J. Geo-Inf. 2017, 6, 290. [Google Scholar] [CrossRef]
- Bonansea, M.; Rodriguez, M.C.; Pinotti, L.; Ferrero, S. Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sens. Environ. 2015, 158, 28–41. [Google Scholar] [CrossRef]
- Bresciani, M.; Stroppiana, D.; Odermatt, D.; Morabito, G.; Giardino, C. Assessing remotely sensed chlorophyll-a for the implementation of the Water Framework Directive in European perialpine lakes. Sci. Total Environ. 2011, 409, 3083–3091. [Google Scholar] [CrossRef] [Green Version]
- Giardino, C.; Bresciani, M.; Villa, P.; Martinelli, A. Application of remote sensing in water resource management: The case study of Lake Trasimeno, Italy. Water Resour. Manag. 2010, 24, 3885–3899. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.; Ho, H.; Nazeer, M.; Nichol, J.; Abbas, S.; Tang, D.; Lee, K.; Pun, L. Comparison of machine learning algorithms for retrieval of water quality indicators in case-II waters: A case study of Hong Kong. Remote Sens. 2019, 11, 617. [Google Scholar] [CrossRef] [Green Version]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Ansper, A.; Alikas, K. Retrieval of chlorophyll a from Sentinel-2 MSI data for the European Union water framework directive reporting purposes. Remote Sens. 2019, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Dörnhöfer, K.; Klinger, P.; Heege, T.; Oppelt, N. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake. Sci. Total Environ. 2018, 612, 1200–1214. [Google Scholar] [CrossRef] [PubMed]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.C.J.; Odermatt, D.; Hunter, P.D.; Brockmann, C.; Présing, M.; Balzter, H.; Tóth, V.R. Satellite remote sensing of phytoplankton phenology in Lake Balaton using 10years of MERIS observations. Remote Sens. Environ. 2015, 158, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Schalles, J.F.; Hladik, C.M. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sens. Environ. 2007, 109, 464–472. [Google Scholar] [CrossRef]
- Belzile, C.; Vincent, W.F.; Howard-Williams, C.; Hawes, I.; James, M.R.; Kumagai, M.; Roesler, C.S. Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake. Water Resour. Res. 2004, 40, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Doerffer, R.; Schiller, H. The MERIS case 2 water algorithm. Int. J. Remote Sens. 2007, 28, 517–535. [Google Scholar] [CrossRef]
- Schroeder, T.; Schaale, M.; Fischer, J. Retrieval of atmospheric and oceanic properties from MERIS measurements: A new Case-2 water processor for BEAM. Int. J. Remote Sens. 2007, 28, 5627–5632. [Google Scholar] [CrossRef]
- Odermatt, D.; Giardino, C.; Heege, T. Chlorophyll retrieval with MERIS Case-2-Regional in perialpine lakes. Remote Sens. Environ. 2010, 114, 607–617. [Google Scholar] [CrossRef] [Green Version]
- Cui, T.; Zhang, J.; Groom, S.; Sun, L.; Smyth, T.; Sathyendranath, S. Validation of MERIS ocean-color products in the Bohai Sea: A case study for turbid coastal waters. Remote Sens. Environ. 2010, 114, 2326–2336. [Google Scholar] [CrossRef]
- Minghelli-Roman, A.; Laugier, T.; Polidori, L.; Mathieu, S.; Loubersac, L.; Gouton, P. Satellite survey of seasonal trophic status and occasional anoxic “malaïgue” crises in the Thau lagoon using MERIS images. Int. J. Remote Sens. 2011, 32, 909–923. [Google Scholar] [CrossRef] [Green Version]
- Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. In Proceedings of the ESASP, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Mancino, G.; Nolè, A.; Urbano, V.; Amato, M.; Ferrara, A. Assessing water quality by remote sensing in small lakes: The case study of Monticchio lakes in southern Italy. IForest 2009, 2, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, C. Remote sensing of the colour and temperature of volcanic lakes. Int. J. Remote Sens. 1997, 18, 5–37. [Google Scholar] [CrossRef]
- Ellwood, N.T.W.; Albertano, P.; Galvez, R.; Funiciello, R.; Mosello, R. Water chemistry and trophic evaluation of Lake Albano (Central Italy): A four year water monitoring study. J. Limnol. 2009, 68, 288–303. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology: Lake and River Ecosystems; Elsevier Academic Press, 2001; ISBN 9780127447605. [Google Scholar]
- O’Sullivan, P.E.; Reynolds, C.S. The Lakes Handbook: Limnology and Limnetic Ecology; Blackwell Publishing: Oxford, UK, 2004; ISBN 0-632-04797-6. [Google Scholar]
- Bruno, M.; Marchiori, E.; Mecozzi, M.; Congestri, R.; Melchiorre, S.; Falleni, F.; Nusca, A. Risanamento Trofico Negli Ecosistemi Lacustri: Confronto Fra i Laghi di Bracciano e Martignano; Rapporti ISTISAN; Istituto Superiore di Sanità: Rome, Italy, 2006. [Google Scholar]
- Margaritora, F.G. Limnology in Latium: The volcanic lakes. Mem. Dell’Istituto Ital. Di Idrobiol. 1992, 50, 319–336. [Google Scholar]
- Margaritora, F.G.; Bazzanti, M.; Ferrara, O.; Mastrantuono, L.; Seminara, M.; Vagaggini, D. Classification of the ecological status of volcanic lakes in Central Italy. J. Limnol. 2003, 62, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Pahlevan, N.; Smith, B.; Binding, C.; Gurlin, D.; Li, L.; Bresciani, M.; Giardino, C. Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters. Remote Sens. Environ. 2021, 253, 112200. [Google Scholar] [CrossRef]
- Binding, C.E.; Greenberg, T.A.; McCullough, G.; Watson, S.B.; Page, E. An analysis of satellite-derived chlorophyll and algal bloom indices on Lake Winnipeg. J. Great Lakes Res. 2018, 44, 436–446. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Humphrey, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- R Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Vincent, W.F.; Gibbs, M.M.; Dryden, S.J. Accelerated eutrophication in a New Zealand lake: Lake rotoiti, central north island. N. Z. J. Mar. Freshw. Res. 1984, 18, 431–440. [Google Scholar] [CrossRef]
- Von Westernhagen, N.; Hamilton, D.P.; Pilditch, C.A. Temporal and spatial variations in phytoplankton productivity in surface waters of a warm-temperate, monomictic lake in New Zealand. Hydrobiologia 2010, 652, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Vincent, W.F. Phytoplankton production and winter mixing: Contrasting effects in two oligotrophic lakes. J. Ecol. 1983, 71, 1–20. [Google Scholar] [CrossRef]
- Hamilton, D.P.; O’Brien, K.R.; Burford, M.A.; Brookes, J.D.; McBride, C.G. Vertical distributions of chlorophyll in deep, warm monomictic lakes. Aquat. Sci. 2010, 72, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Flint, E.A. Phytoplankton in seven monomictic lakes near rotorua, New Zealand. N. Z. J. Bot. 1977, 15, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Gons, H.J.; Auer, M.T.; Effler, S.W. MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes. Remote Sens. Environ. 2008, 112, 4098–4106. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Satellite estimation of chlorophyll-a concentration using the red and NIR bands of MERISThe azov sea case study. IEEE Geosci. Remote Sens. Lett. 2009, 6, 845–849. [Google Scholar] [CrossRef]
- Binding, C.E.; Greenberg, T.A.; Bukata, R.P. The MERIS Maximum Chlorophyll Index; its merits and limitations for inland water algal bloom monitoring. J. Great Lakes Res. 2013, 39, 100–107. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: Modeling results. Appl. Opt. 2006, 45, 3577–3592. [Google Scholar] [CrossRef] [Green Version]
- Dall’Olmo, G.; Gitelson, A.A.; Rundquist, D.C.; Leavitt, B.; Barrow, T.; Holz, J.C. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sens. Environ. 2005, 96, 176–187. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Yacobi, Y.Z. Reflectance in the red and near infra-red ranges of the spectrum as tool for remote chlorophyll estimation in inland waters—Lake kinneret case study. In Proceeding of the Eighteenth Convention of Electrical and Electronics Engineers in Israel, Tel Aviv, Israel, 7–8 March 1995; pp. 1–5. [Google Scholar] [CrossRef]
- Zheng, G.; DiGiacomo, P.M. Remote sensing of chlorophyll-a in coastal waters based on the light absorption coefficient of phytoplankton. Remote Sens. Environ. 2017, 201, 331–341. [Google Scholar] [CrossRef]
- Defoin-Platel, M.; Chami, M. How ambiguous is the inverse problem of ocean color in coastal waters? J. Geophys. Res. Ocean. 2007, 112, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Matthews, M.W. A current review of empirical procedures of remote sensing in Inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Smith, B.; Pahlevan, N.; Schalles, J.; Ruberg, S.; Errera, R.; Ma, R.; Giardino, C.; Bresciani, M.; Barbosa, C.; Moore, T.; et al. A Chlorophyll-a Algorithm for Landsat-8 Based on Mixture Density Networks. Front. Remote Sens. 2021, 1, 1–17. [Google Scholar] [CrossRef]
- Mishra, D.R.; Ogashawara, I.; Gitelson, A.A. Bio-Optical Modeling and Remote Sensing of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128046548. [Google Scholar]
- Palmer, S.C.J.; Hunter, P.D.; Lankester, T.; Hubbard, S.; Spyrakos, E.; Tyler, A.N.; Présing, M.; Horváth, H.; Lamb, A.; Balzter, H.; et al. Validation of Envisat MERIS algorithms for chlorophyll retrieval in a large, turbid and optically-complex shallow lake. Remote Sens. Environ. 2015, 157, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Lee, Z.; Hu, C.; Wang, M. Requirement of minimal signal-to-noise ratios of ocean color sensors and uncertainties of ocean color products. J. Geophys. Res. Ocean. 2017, 122, 1–22. [Google Scholar] [CrossRef]
- Wang, M.; Gordon, H.R. Sensor performance requirements for atmospheric correction of satellite ocean color remote sensing. Opt. Express 2018, 26, 7390. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Feng, L.; Lee, Z.; Davis, C.O.; Mannino, A.; McClain, C.R.; Franz, B.A. Dynamic range and sensitivity requirements of satellite ocean color sensors: Learning from the past. Appl. Opt. 2012, 51, 6045–6062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorge, D.S.F.; Barbosa, C.C.F.; de Carvalho, L.A.S.; Affonso, A.G.; Lobo, F.D.L.; Novo, E.M.L.D.M. SNR (signal-to-noise ratio) impact on water constituent retrieval from simulated images of optically complex Amazon lakes. Remote Sens. 2017, 9, 644. [Google Scholar] [CrossRef] [Green Version]
- Chondrogianni, C.; Ariztegui, D.; Guilizzoni, P.; Lami, A. ALBANO e NEMI. Mem. Ist. Ital. Idrobiol. 1996, 55, 17–22. [Google Scholar]
- Medici, F. Laghi Albano e di Nemi: Carenza idrica e alterazione della qualità delle acque. Geol. Dell’ambiente Period. Trimest. Soc. Ital. Geol. Ambient. 2005, 1, 8–11. [Google Scholar]
- Carapezza, M.L.; Lelli, M.; Tarchini, L. Geochemistry of the Albano and Nemi crater lakes in the volcanic district of Alban Hills (Rome, Italy). J. Volcanol. Geotherm. Res. 2008, 178, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Cioni, R.; Guidi, M.; Raco, B.; Marini, L.; Gambardella, B. Water chemistry of Lake Albano (Italy). J. Volcanol. Geotherm. Res. 2003, 120, 179–195. [Google Scholar] [CrossRef]
Lake Albano | Lake Bracciano | Lake Nemi | ||||||
---|---|---|---|---|---|---|---|---|
Sampling Date | Image Acquisition Date | Time Difference (d) | Sampling Date | Image Acquisition Date | Time Difference (d) | Sampling Date | Image Acquisition Date | Time Difference (d) |
19 March 2019 | 22 March 2019 | 3 | 18 March 2019 | 22 March 2019 | 4 | 19 March 2019 | 22 March 2019 | 3 |
2 April 2019 | 1 April 2019 | 1 | 1 April 2019 | 30 March 2019 | 2 | 2 April 2019 | 1 April 2019 | 1 |
16 April 2019 | - | - | 17 April 2019 | 19 April 2019 | 2 | 16 April 2019 | - | - |
16 May 2019 | - | - | 16 May 2019 | - | - | |||
28 May 2019 | 5 June 2019 | 8 | 30 May 2019 | 31 May 2019 | 1 | 29 May 2019 | 5 June 2019 | 7 |
12 June 2019 | 15 June 2019 | 3 | 10 June 2019 | 13 June 2019 | 3 | 12 June 2019 | 15 June 2019 | 3 |
27 June 2019 | 25 June 2019 | 2 | 26 June 2019 | 25 June 2019 | 1 | 27 June 2019 | 25 June 2019 | 2 |
9 July 2019 | 5 July 2019 | 4 | 9 July 2019 | 5 July 2019 | 4 | |||
23 July 2019 | 25 July 2019 | 2 | 25 July 2019 | 25 July 2019 | 0 | 23 July 2019 | 25 July 2019 | 2 |
5 September 2019 | 3 September 2019 | 2 | 17 September 2019 | 18 September 2019 | 1 | 5 September 2019 | 3 September 2019 | 2 |
21 October 2019 | 23 October 2019 | 2 | 21 October 2019 | 23 October 2019 | 2 |
Lake | Chl (mg/L) | Chl-a (mg/L) | Temp (°C) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | SD | Mean | Min | Max | SD | Mean | Min | Max | SD | |
Bracciano | 1.68 | 0.44 | 3.73 | 0.95 | 1.29 | 0.44 | 2.51 | 0.60 | 18.37 | 10.47 | 26.47 | 6.03 |
Albano | 3.69 | 0.42 | 20.2 | 4.56 | 3.17 | 0.33 | 19.1 | 4.2 | 21.1 | 11.1 | 30.1 | 6.3 |
Nemi | 2.15 | 0.42 | 10.86 | 2.81 | 1.87 | 0.33 | 8.55 | 2.5 | 20.4 | 10.3 | 28.7 | 6.1 |
Lake | Sal (‰) | PH | DO (mg/L) | |||||||||
Mean | Min | Max | SD | Mean | Min | Max | SD | Mean | Min | Max | SD | |
Bracciano | 0.27 | 0.26 | 0.27 | 0.01 | 8.31 | 7.14 | 8.92 | 0.37 | 9.57 | 8.3 | 10.38 | 0.79 |
Albano | 0.24 | 0.22 | 0.25 | 0.01 | 8.42 | 8.04 | 8.65 | 0.15 | 0.27 | 8.57 | 10.68 | 8.42 |
Nemi | 0.16 | 0.15 | 0.16 | 0.00 | 8.30 | 7.36 | 8.69 | 0.27 | 8.96 | 7.59 | 10.31 | 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrone, M.; Scalici, M.; Conti, L.; Moravec, D.; Kropáček, J.; Sighicelli, M.; Lecce, F.; Malavasi, M. Water Mixing Conditions Influence Sentinel-2 Monitoring of Chlorophyll Content in Monomictic Lakes. Remote Sens. 2021, 13, 2699. https://doi.org/10.3390/rs13142699
Perrone M, Scalici M, Conti L, Moravec D, Kropáček J, Sighicelli M, Lecce F, Malavasi M. Water Mixing Conditions Influence Sentinel-2 Monitoring of Chlorophyll Content in Monomictic Lakes. Remote Sensing. 2021; 13(14):2699. https://doi.org/10.3390/rs13142699
Chicago/Turabian StylePerrone, Michela, Massimiliano Scalici, Luisa Conti, David Moravec, Jan Kropáček, Maria Sighicelli, Francesca Lecce, and Marco Malavasi. 2021. "Water Mixing Conditions Influence Sentinel-2 Monitoring of Chlorophyll Content in Monomictic Lakes" Remote Sensing 13, no. 14: 2699. https://doi.org/10.3390/rs13142699
APA StylePerrone, M., Scalici, M., Conti, L., Moravec, D., Kropáček, J., Sighicelli, M., Lecce, F., & Malavasi, M. (2021). Water Mixing Conditions Influence Sentinel-2 Monitoring of Chlorophyll Content in Monomictic Lakes. Remote Sensing, 13(14), 2699. https://doi.org/10.3390/rs13142699