Lookup Table Approach for Radiometric Calibration of Miniaturized Multispectral Camera Mounted on an Unmanned Aerial Vehicle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multispectral Camera and Experimental System
2.1.1. Calibration of Multispectral Camera
2.1.2. Integrating Sphere System
2.2. Derivation of LUTs
2.2.1. Radiometric Calibration Model
2.2.2. Correction of Dark Current
2.2.3. Vignetting Effect Correction
2.2.4. Response Correction
2.2.5. Parameters of Absolute Radiometric Calibration
2.3. Experimental Schemes
- (1)
- Dark current experiment: These experiments were conducted with a lens cover to simulate the environment without incident light. The variations in the dark current as a function of gain (1×, 2×, 4×, and 8×) and integration time (0.44, 0.59, 0.78, 1.0, 1.4, 1.9, and 2.5) were examined. Based on the method described in Section 2.2.2, the correction factor LUT for the non-uniformity of dark current was obtained.
- (2)
- Uniformity experiment: The quantized values of the image captured in the uniform light field of the integrating sphere were non-uniform due to the vignetting effect and differences in pixel response. Firstly, the dark current in the images was eliminated using the corresponding LUT. Then, the vignetting effect was analyzed based on Section 2.2.3. Subsequently, the difference in pixel response was examined using the images that had already been corrected for dark current and vignetting effect based on Section 2.2.4.
- (3)
- Absolute calibration experiment: The absolute calibration parameters were obtained through experiments with different output radiance levels of integrating sphere (100%, 70%, 40% output power) and integration times (0.44, 0.59, 0.78, 1.0, 1.4, 1.9, and 2.5 ms) of MicaSense RedEdge-MX. All the images were corrected for dark current, vignetting effect, and response according to the previous two steps. Then, the average value of the image was calculated as the effective quantized value to establish a linear relationship with incident radiance by linear regression.
3. Experiments and Results
3.1. Results of Radiometric Calibration
3.1.1. Correction of Dark Current
3.1.2. Vignetting Effect
3.1.3. Response Correction
3.1.4. Absolute Calibration Parameters
- ●
- Firstly, according to Equation (2), all the collected images were corrected for dark current, vignetting effect, and non-uniform pixel response with the LUTs derived above.
- ●
- Secondly, according to Equation (3), the 21 images were normalized with respect to the integration time, gain, and digital bit rate, and the mean DN was calculated for each corrected image.
- ●
3.2. Verification of Results
3.2.1. Verification Method
3.2.2. Relative Accuracy
3.2.3. Absolute Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lebourgeois, V.; Bégué, A.; Labbé, S.; Mallavan, B.; Prévot, L.; Roux, B. Can commercial digital cameras be used as multispectral sensors? A crop monitoring test. Sensors 2008, 8, 7300–7322. [Google Scholar] [CrossRef] [PubMed]
- Assmann, J.J.; Kerby, J.T.; Cunliffe, A.M.; Myers-Smith, I.H. Vegetation monitoring using multispectral sensors — best practices and lessons learned from high latitudes. J. Unmanned Veh. Syst. 2019, 7, 54–75. [Google Scholar] [CrossRef] [Green Version]
- Pozo, S.D.; Rodríguez-Gonzálvez, P.; Hernández-López, D.; Felipe-García, B. Vicarious radiometric calibration of a multispectral camera on board an unmanned aerial system. Remote Sens. 2014, 6, 1918–1937. [Google Scholar] [CrossRef] [Green Version]
- Hakala, T.; Markelin, L.; Honkavaara, E.; Scott, B.; Theocharous, T.; Nevalainen, O.; Näsi, R.; Suomalainen, J.; Viljanen, N.; Greenwell, C.; et al. Direct reflectance measurements from drones: Sensor absolute radiometric calibration and system tests for forest reflectance characterization. Sensors 2018, 18, 1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nocerino, E.; Dubbini, M.; Menna, F.; Remondino, F.; Gattelli, M.; Covi, D. Geometric calibration and radiometric correction of the maia multispectral camera. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2017, 42, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Markelin, L.; Suomalainen, J.; Hakala, T.; Oliveira, R.A.; Viljanen, N.; Näsi, R.; Scott, B.; Theocharous, T.; Greenwell, C.; Fox, N.; et al. Methodology for direct reflectance measurement from a drone: System description, radiometric calibration and latest results. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2018, 42, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correctionworkflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.; Shi, B. Systematical approach for noise in CMOS LNA. Pan Tao Ti Hsueh Pao/Chin. J. Semicond. 2005, 26, 487–493. [Google Scholar]
- Burke, B.; Jorden, P.; Paul, V.U. CCD technology. Exp. Astron. 2006, 19, 69–102. [Google Scholar] [CrossRef]
- Hain, R.; Kähler, C.J.; Tropea, C. Comparison of CCD, CMOS and intensified cameras. Exp. Fluids 2007, 42, 403–411. [Google Scholar] [CrossRef]
- Tian, H.; Fowler, B.; El Gamal, A. Analysis of temporal noise in CMOS photodiode active pixel sensor. IEEE J. Solid-State Circuits 2001, 36, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Honkavaara, E.; Khoramshahi, E. Radiometric correction of close-range spectral image blocks captured using an unmanned aerial vehicle with a radiometric block adjustment. Remote Sens. 2018, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- Moran, S.; Fitzgerald, G.; Rango, A.; Walthall, C.; Barnes, E.; Bausch, W.; Clarke, T.; Daughtry, C.; Everitt, J.; Escobar, D.; et al. Sensor development and radiometric correction for agricultural applications. Photogramm. Eng. Remote Sens. 2003, 69, 705–718. [Google Scholar] [CrossRef]
- Olsen, D.; Dou, C.; Zhang, X.; Hu, L.; Kim, H.; Hildum, E. Radiometric calibration for AgCam. Remote Sens. 2010, 2, 464–477. [Google Scholar] [CrossRef] [Green Version]
- Franz, M.O.; Grunwald, M.; Schall, M.; Laube, P.; Umlauf, G. Radiometric calibration of digital cameras using neural networks. In Optics and Photonics for Information Processing XI; International Society for Optics and Photonics: Bellingham, WA, USA, 2017. [Google Scholar] [CrossRef]
- Bigas, M.; Cabruja, E.; Forest, J.; Salvi, J. Review of CMOS image sensors. Microelectron. J. 2006, 37, 433–451. [Google Scholar] [CrossRef] [Green Version]
- Tagle Casapia, M.X. Study of radiometric variations in Unmanned Aerial Vehicle remote sensing imagery for vegetation mapping. Lund Univ. GEM Thesis Ser. 2017. [Google Scholar] [CrossRef]
- Duan, Y.; Yan, L.; Yang, B.; Jing, X.; Chen, W. Outdoor relative radiometric calibration method using gray scale targets. Sci. China Technol. Sci. 2013, 56, 1825–1834. [Google Scholar] [CrossRef]
- Minařík, R.; Langhammer, J.; Hanuš, J. Radiometric and atmospheric corrections of multispectral μMCA Camera for UAV spectroscopy. Remote Sens. 2019, 11, 2428. [Google Scholar] [CrossRef] [Green Version]
- Aasen, H.; Bendig, J.; Bolten, A.; Bennertz, S.; Willkomm, M.; Bareth, G. Introduction and preliminary results of a calibration for full-frame hyperspectral cameras to monitor agricultural crops with UAVs. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2014, 40, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Suomalainen, J.; Anders, N.; Iqbal, S.; Roerink, G.; Franke, J.; Wenting, P.; Hünniger, D.; Bartholomeus, H.; Becker, R.; Kooistra, L. A lightweight hyperspectral mapping system and photogrammetric processing chain for unmanned aerial vehicles. Remote Sens. 2014, 6, 11013–11030. [Google Scholar] [CrossRef] [Green Version]
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Minařík, R.; Langhammer, J. Rapid radiometric calibration of multiple camera array using insitu data for UAV multispectral photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2019, 42, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Kelcey, J.; Lucieer, A. Sensor correction of a 6-band multispectral imaging sensor for UAV remote sensing. Remote Sens. 2012, 4, 1462–1493. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Sakurai, T. The Vignetting Effect of the Soft X-Ray Telescope Onboard Yohkoh: II. Pre-Launch Data Analysis. Sol. Phys. 2016, 291, 705–725. [Google Scholar] [CrossRef]
- He, K.; Zhao, H.Y.; Liu, J.J. Vignetting correction method for aviatic remote sensing image. Jilin Daxue Xuebao (Gongxueban)/J. Jilin Univ. (Eng. Technol. Ed.) 2007, 37, 1447–1450. [Google Scholar] [CrossRef]
- Lou, Z.; Li, T.; Shen, S. Vignetting correction method for the infrared system based on polynomial approximation. Infrared Laser Eng. 2016, 45, 6–10. [Google Scholar]
- Ortega-Terol, D.; Hernandez-Lopez, D.; Ballesteros, R.; Gonzalez-Aguilera, D. Automatic hotspot and sun glint detection in UAV multispectral images. Sensors 2017, 17, 2352. [Google Scholar] [CrossRef] [Green Version]
- Honkavaara, E.; Hakala, T.; Markelin, L.; Rosnell, T.; Saari, H.; Mäkynen, J. A process for radiometric correction of UAV image blocks. Photogramm. Fernerkundung Geoinf. 2012, 2012, 115–127. [Google Scholar] [CrossRef]
- Yu, W.; Chung, Y.; Soh, J. Vignetting distortion correction method for high quality digital imaging. Proc. Int. Conf. Pattern Recognit. 2004, 3, 666–669. [Google Scholar] [CrossRef]
- Mamaghani, B.; Salvaggio, C. Multispectral sensor calibration and characterization for sUAS remote sensing. Sensors 2019, 19, 4453. [Google Scholar] [CrossRef] [Green Version]
- MicaSense. RedEdge-MX. Available online: https://www.micasense.com/rededge-mx/ (accessed on 14 October 2020).
- Li, X.; Gao, H.; Yu, C.; Chen, Z.C. Impact analysis of lens shutter of aerial camera on image plane illuminance. Optik (Stuttg) 2018, 173, 120–131. [Google Scholar] [CrossRef]
- Lin, D.; Maas, H.G.; Westfeld, P.; Budzier, H.; Gerlach, G. An advanced radiometric calibration approach for uncooled thermal cameras. Photogramm. Rec. 2018, 33, 30–48. [Google Scholar] [CrossRef]
- Tu, Y.H.; Phinn, S.; Johansen, K.; Robson, A. Assessing radiometric correction approaches for multi-spectral UAS imagery for horticultural applications. Remote Sens. 2018, 10, 1684. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Myint, S.W. A Simplified Empirical Line Method of Radiometric Calibration for Small Unmanned Aircraft Systems-Based Remote Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1876–1885. [Google Scholar] [CrossRef]
- Bedrich, K.; Bokalic, M.; Bliss, M.; Topic, M.; Betts, T.R.; Gottschalg, R. Electroluminescence Imaging of PV Devices: Advanced Vignetting Calibration. IEEE J. Photovoltaics 2018, 8, 1297–1304. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Lin, S.; Kambhamettu, C.; Yu, J.; Kang, S.B. Single-image vignetting correction. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 2243–2256. [Google Scholar] [CrossRef]
- Wang, L.; Suo, J.; Fan, J. Spatialoral codec accuracy calibration for multi-scale giga-pixel macroscope. In Proceedings of the 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shanghai, China, 8–12 July 2019; pp. 414–419. [Google Scholar] [CrossRef]
- Aggarwal, M.; Hua, H.; Ahuja, N. On cosine-fourth and vignetting effects in real lenses. Proc. IEEE Int. Conf. Comput. Vis. 2001, 1, 472–479. [Google Scholar] [CrossRef]
- MicaSense. RedEdge-MX. Available online: https://support.micasense.com/hc/en-us/articles/115000351194-RedEdge-Camera-Radiometric-Calibration-Model (accessed on 14 October 2020).
- Lu, Y.; Wang, K.; Fan, G. Photometric calibration and image stitching for a large field of view multi-camera system. Sensors 2016, 16, 516. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value | Parameter | Value |
---|---|---|---|
Spectral bands (Band1–Band5) | Blue (475 nm), green (560 nm), red (668 nm), red edge (717 nm), and near-infrared (840 nm) | Shutter mode | Global shutter |
Image size | 4.8 × 3.6 mm2 | Field of view (FOV) of less | 47.2° HFOV |
Imager resolution | 1280 × 960 pixels | Focal length of lens | 5.4 mm |
Average pixel size of image | 3.75 μm | Integration time | 0.066–24.5 ms |
Gain values [32] | 1×, 2×, 4×, 8× | RAW Format | 12-bit DNG or 16-bit TIFF |
Exposure time | 0.066–24.5 ms | Ground sample distance | 8 cm per pixel (per band) at 120 m (~400 ft) above ground level (AGL) |
Parameters Band | a | b | R-Square | RMSE | MS of Residual |
---|---|---|---|---|---|
Band1 | 0.01962 | −0.0079 | 0.998 | 0.00041 | 1.68 × 10−7 |
Band2 | 0.01532 | −0.0165 | 0.993 | 0.00159 | 2.53 × 10−6 |
Band3 | 0.03255 | −0.0311 | 0.998 | 0.00140 | 1.95 × 10−6 |
Band4 | 0.03640 | −0.0359 | 0.997 | 0.00175 | 3.06 × 10−6 |
Band5 | 0.02184 | −0.0422 | 0.996 | 0.00260 | 6.74 × 10−6 |
Band | WT01 (%) | WT02 (%) | CRP (%) | WT01 (%) | WT02 (%) |
---|---|---|---|---|---|
Band1 | 85.2 | 85.2 | 53.8 | 32.3 | 32.3 |
Band2 | 77.7 | 77.7 | 53.8 | 30.7 | 30.7 |
Band3 | 81.5 | 81.5 | 53.6 | 30.9 | 30.9 |
Band4 | 82.3 | 82.3 | 53.1 | 31.6 | 31.6 |
Band5 | 84.4 | 84.4 | 53.5 | 30.8 | 30.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Gu, X.; Wei, X.; Yu, T.; Zhang, H. Lookup Table Approach for Radiometric Calibration of Miniaturized Multispectral Camera Mounted on an Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 4012. https://doi.org/10.3390/rs12244012
Cao H, Gu X, Wei X, Yu T, Zhang H. Lookup Table Approach for Radiometric Calibration of Miniaturized Multispectral Camera Mounted on an Unmanned Aerial Vehicle. Remote Sensing. 2020; 12(24):4012. https://doi.org/10.3390/rs12244012
Chicago/Turabian StyleCao, Hongtao, Xingfa Gu, Xiangqin Wei, Tao Yu, and Haifeng Zhang. 2020. "Lookup Table Approach for Radiometric Calibration of Miniaturized Multispectral Camera Mounted on an Unmanned Aerial Vehicle" Remote Sensing 12, no. 24: 4012. https://doi.org/10.3390/rs12244012
APA StyleCao, H., Gu, X., Wei, X., Yu, T., & Zhang, H. (2020). Lookup Table Approach for Radiometric Calibration of Miniaturized Multispectral Camera Mounted on an Unmanned Aerial Vehicle. Remote Sensing, 12(24), 4012. https://doi.org/10.3390/rs12244012