Next Article in Journal
Discrimination of Canopy Structural Types in the Sierra Nevada Mountains in Central California
Previous Article in Journal
A Mixed Model Approach to Vegetation Condition Prediction Using Artificial Neural Networks (ANN): Case of Kenya’s Operational Drought Monitoring
Previous Article in Special Issue
A Controllable Success Fix Rate Threshold Determination Method for GNSS Ambiguity Acceptance Tests
Article Menu
Issue 9 (May-1) cover image

Export Article

Open AccessArticle

A Three-Step Method for Determining Unhealthy Time Period of GPS Satellite Orbit in Broadcast Ephemeris and Its Preliminary Applications for Precise Orbit Determination

1,2,3, 1,2,*, 1,2, 1,2 and 1,2
1
Institute of Geodesy and Geophysics, CAS, 340 Xudong Street, Wuhan 430077, China
2
State Key Laboratory of Geodesy and Earth’s Dynamics, 340 Xudong Street, Wuhan 430077, China
3
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, A19 Yuquan Road, Beijing 100049, China
*
Author to whom correspondence should be addressed.
Remote Sens. 2019, 11(9), 1098; https://doi.org/10.3390/rs11091098
Received: 13 March 2019 / Revised: 26 April 2019 / Accepted: 6 May 2019 / Published: 8 May 2019
  |  
PDF [3397 KB, uploaded 9 May 2019]
  |  

Abstract

Abnormal information of satellite orbits inevitably appears in the broadcast ephemeris. Failure to obtain unhealthy information on GPS satellite orbits in precise orbit determination (POD) degrades GPS service performance. At present, the reliable unhealthy information published by the Center for Orbit Determination in Europe (CODE) is usually used, but it has at least one-day latency, and the current level of unhealthy information cannot fully meet the requirements of rapid and real-time geodetic applications, especially for non-IGS (International global navigation satellite systems (GNSS) Service) analysis centers and BeiDou navigation satellite system (BDS) users. Furthermore, the unhealthy orbit information detected by the traditional method, which is based on the synchronized pseudo-range residuals and regional observation network, cannot meet the requirement of setting separate sub-arcs in POD. In view of these problems, we propose a three-step method for determining unhealthy time periods of GPS satellite orbit in broadcast ephemeris during POD to provide reliable unhealthy information in near-real time. This method is a single-epoch solution, and it can detect unhealthy time periods in each sampling of observation in theory. It was subsequently used to detect unhealthy time periods for satellites G09 and G01 based on the 111 globally distributed tracking stations in the IGS. The performance of the new method was evaluated using cross-validation. Based on the test results, it detected an orbital leap for G09 in the broadcast ephemeris from 09:59:42 to 14:00:42 on 25 August 2017. Compared to the traditional method, the unhealthy start time using the three-step method was in better agreement with the information provided by CODE’s satellite crux files. G01 did not appear to have an orbital leap on the specified date, but it was misjudged by the traditional method. Furthermore, compared to the traditional method, the three-step method can perform unhealthy time period detection for a satellite all day long. In addition, precise orbit determination for unhealthy satellites is realized successfully with the unhealthy orbit arc information identified in this study. Compared to the CODE orbit, the root mean square and standard deviation of the new method for G09 are less than 2 cm, and the three-step method shows an improvement in accuracy compared with the traditional method. From the above results, it can be seen that this study can provide a feasible approach to meet the real-time unhealthy time period detection requirements of a satellite orbit in a broadcast ephemeris during POD. Furthermore, compared to waiting for updates of CODE’s satellite crux files or for accumulating delayed observation data, it has the potential to provide additional information in the process of generating ultra-rapid/real-time orbits. View Full-Text
Keywords: three-step method; unhealthy orbit detection; precise orbit determination (POD); broadcast ephemeris; single-epoch solution three-step method; unhealthy orbit detection; precise orbit determination (POD); broadcast ephemeris; single-epoch solution
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Ye, F.; Yuan, Y.; Zhang, B.; Tan, B.; Ou, J. A Three-Step Method for Determining Unhealthy Time Period of GPS Satellite Orbit in Broadcast Ephemeris and Its Preliminary Applications for Precise Orbit Determination. Remote Sens. 2019, 11, 1098.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top