Satellite Observations of Wind Wake and Associated Oceanic Thermal Responses: A Case Study of Hainan Island Wind Wake
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. ASAR Data and Processing
2.3. Other Satellite Observation and Reanalysis Datasets
2.4. WRF Model Simulations
2.5. Estimation of Wind-induced Currents
2.6. Heat Advection Estimation
3. Wind Wake Characters and Oceanic Responses
3.1. Wind Wake Observed by Spaceborne SAR
3.2. Seasonality of the Wake Distribution
3.3. Spatial Variability of Oceanic Thermal Response
3.4. The Oceanic Heat Advection
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, R.B.; Gleason, A.C.; Gluhosky, P.A.; Grubišić, V. The Wake of St. Vincent. J. Atmos. Sci. 1997, 54, 606–623. [Google Scholar] [CrossRef]
- Caldeira, R.M.A.; Groom, S.; Miller, P.; Pilgrim, D.; Nezlin, N.P. Sea-surface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic. Remote Sens. Environ. 2002, 80, 336–360. [Google Scholar] [CrossRef]
- Xie, S.-P.; Liu, W.T.; Liu, Q.; Nonaka, M. Far-Reaching Effects of the Hawaiian Islands on the Pacific Ocean-Atmosphere System. Science 2001, 292, 2057–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.; McWilliams, J.C. A numerical study of island wakes in the Southern California Bight. Cont. Shelf Res. 2007, 27, 1233–1248. [Google Scholar] [CrossRef]
- Harlan, J.A.; Swearer, S.E.; Leben, R.R.; Fox, C.A. Surface circulation in a Caribbean island wake. Cont. Shelf Res. 2002, 22, 417–434. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Xie, S.-P.; Zhang, R.; Sun, Z. A winter warm pool southwest of Hainan Island due to the orographic wind wake. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Chen, C.; Ling, Z. Warm water wake off northeast Vietnam in the South China Sea. Acta Oceanol. Sin. 2014, 33, 55–63. [Google Scholar] [CrossRef]
- Wyrtki, K. Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand 1959–1961; Naga Report Vol. 2; University of California: San Diego, CA, USA, 1961; pp. 164–169. [Google Scholar]
- Shaw, P.-T.; Chao, S.-Y. Surface circulation in the South China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 1994, 41, 1663–1683. [Google Scholar] [CrossRef]
- Chu, P.C.; Edmons, N.L.; Fan, C. Dynamical Mechanisms for the South China Sea Seasonal Circulation and Thermohaline Variabilities. J. Phys. Oceanogr. 1999, 29, 2971–2989. [Google Scholar] [CrossRef]
- Xie, L.; Pallàs-Sanz, E.; Zheng, Q.; Zhang, S.; Zong, X.; Yi, X.; Li, M. Diagnosis of 3D Vertical Circulation in the Upwelling and Frontal Zones East of Hainan Island, China. J. Phys. Oceanogr. 2017, 47, 755–774. [Google Scholar] [CrossRef]
- Lin, P.; Cheng, P.; Gan, J.; Hu, J. Dynamics of wind-driven upwelling off the northeastern coast of Hainan Island. J. Geophys. Res. Oceans 2016, 121, 1160–1173. [Google Scholar] [CrossRef]
- Su, J.; Pohlmann, T. Wind and topography influence on an upwelling system at the eastern Hainan coast. J. Geophys. Res. 2009, 114, C06017. [Google Scholar] [CrossRef] [Green Version]
- Minh, N.N.; Patrick, M.; Florent, L.; Sylvain, O.; Gildas, C.; Damien, A.; Van Uu, D. Tidal characteristics of the gulf of Tonkin. Cont. Shelf Res. 2014, 91, 37–56. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.Y.; Kawamura, H.; Tang, D.L. Tidal front around the Hainan Island, northwest of the South China Sea. J. Geophys. Res. 2003, 108, 3342. [Google Scholar] [CrossRef]
- Lü, X.; Qiao, F.; Wang, G.; Xia, C.; Yuan, Y. Upwelling off the west coast of Hainan Island in summer: Its detection and mechanisms. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Li, Y.; Peng, S.; Wang, J.; Yan, J.; Huang, H. On the Mechanism of the Generation and Interannual Variations of the Summer Upwellings West and Southwest Off the Hainan Island. J. Geophys. Res. Oceans 2018, 123, 8247–8263. [Google Scholar] [CrossRef] [Green Version]
- Gulev, S.K.; Latif, M.; Keenlyside, N.; Park, W.; Koltermann, K.P. North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature 2013, 499, 464–467. [Google Scholar] [CrossRef]
- Sha, J.; Yan, X.-H.; Li, X. The horizontal heat advection in the Middle Atlantic Bight and the cross-spectral interactions within the heat advection. J. Geophys. Res. Oceans 2017, 122, 5652–5665. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Kelly, K.A. Seasonal and interannual variations in geostrophic velocity in the Middle Atlantic Bight. J. Geophys. Res. 2003, 108, 3172. [Google Scholar] [CrossRef]
- Dong, S.; Kelly, K.A. Heat Budget in the Gulf Stream Region: The Importance of Heat Storage and Advection. J. Phys. Oceanogr. 2004, 34, 1214–1231. [Google Scholar] [CrossRef]
- Mountain, D.G.; Strout, G.A.; Beardsley, R.C. Surface heat flux in the Gulf of Maine. Deep Sea Res. Part II Top. Stud. Oceanogr. 1996, 43, 1533–1546. [Google Scholar] [CrossRef]
- Lentz, S.J.; Shearman, R.K.; Plueddemann, A.J. Heat and salt balances over the New England continental shelf, August 1996 to June 1997. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Closa, J.; Rosich, B.; Monti-Guarnieri, A. The ASAR wide swath mode products. In Proceedings of the IGARSS 2003, 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Proceedings (IEEE Cat. No.03CH37477). IEEE: New York, NY, USA, 2003; Volume 2, pp. 1118–1120. [Google Scholar]
- Hersbach, H. Comparison of C-Band Scatterometer CMOD5.N Equivalent Neutral Winds with ECMWF. J. Atmos. Ocean. Technol. 2010, 27, 721–736. [Google Scholar] [CrossRef]
- Portabella, M.; Stoffelen, A. On Scatterometer Ocean Stress. J. Atmos. Ocean. Technol. 2009, 26, 368–382. [Google Scholar] [CrossRef] [Green Version]
- Horstmann, J.; Koch, W.; Lehner, S. Ocean wind fields retrieved from the advanced synthetic aperture radar aboard ENVISAT. Ocean Dyn. 2004, 54, 570–576. [Google Scholar] [CrossRef]
- Li, X.; Zheng, W.; Yang, X.; Zhang, J.A.; Pichel, W.G.; Li, Z. Coexistence of Atmospheric Gravity Waves and Boundary Layer Rolls Observed by SAR. J. Atmos. Sci. 2013, 70, 3448–3459. [Google Scholar] [CrossRef]
- Horstmann, J.; Koch, W. Measurement of Ocean Surface Winds Using Synthetic Aperture Radars. IEEE J. Ocean. Eng. 2005, 30, 508–515. [Google Scholar] [CrossRef]
- Chang, R.; Zhu, R.; Badger, M.; Hasager, C.; Xing, X.; Jiang, Y. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea. Remote Sens. 2015, 7, 467–487. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Atlas, R.; Hoffman, R.N.; Ardizzone, J.; Leidner, S.M.; Jusem, J.C.; Smith, D.K.; Gombos, D. A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications. Bull. Am. Meteorol. Soc. 2010, 92, 157–174. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Muñoz, J.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar]
- Al Senafi, F.; Anis, A.; Menezes, V. Surface Heat Fluxes over the Northern Arabian Gulf and the Northern Red Sea: Evaluation of ECMWF-ERA5 and NASA-MERRA2 Reanalyses. Atmosphere 2019, 10, 504. [Google Scholar] [CrossRef] [Green Version]
- Cheney, R.; Miller, L.; Agreen, R.; Doyle, N.; Lillibridge, J. TOPEX/POSEIDON: The 2-cm solution. J. Geophys. Res. 1994, 99, 24555–24563. [Google Scholar] [CrossRef]
- Hasager, C.; Astrup, P.; Zhu, R.; Chang, R.; Badger, M.; Hahmann, A. Quarter-Century Offshore Winds from SSM/I and WRF in the North Sea and South China Sea. Remote Sens. 2016, 8, 769. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Tsimpidi, A.P.; Hu, Y.; Stone, B.; Russell, A.G.; Nenes, A. Differences between downscaling with spectral and grid nudging using WRF. Atmos. Chem. Phys. 2012, 12, 3601–3610. [Google Scholar] [CrossRef] [Green Version]
- Von Storch, H.; Langenberg, H.; Feser, F. A Spectral Nudging Technique for Dynamical Downscaling Purposes. Mon. Weather Rev. 2000, 128, 3664–3673. [Google Scholar] [CrossRef]
- Waldron, K.M.; Paegle, J.; Horel, J.D. Sensitivity of a Spectrally Filtered and Nudged Limited-Area Model to Outer Model Options. Mon. Weather Rev. 1996, 124, 529–547. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S.; Fritsch, J.M. A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization. J. Atmos. Sci. 1989, 47, 2784–2802. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef] [Green Version]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Decharme, B. Influence of runoff parameterization on continental hydrology: Comparison between the Noah and the ISBA land surface models. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Menendez, M.; García-Díez, M.; Fita, L.; Fernández, J.; Méndez, F.J.; Gutiérrez, J.M. High-resolution sea wind hindcasts over the Mediterranean area. Clim. Dyn. 2014, 42, 1857–1872. [Google Scholar] [CrossRef]
- Wang, G. Characteristics Analysis of High Winds over the Bohai and North Yellow Seas and Numerical Study of a High Wind Event. Master Thesis, Ocean University of China, Qingdao, China, 2013. [Google Scholar]
- Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res. 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- Caires, S. Validation of ocean wind and wave data using triple collocation. J. Geophys. Res. 2003, 108, 3098. [Google Scholar] [CrossRef]
- Pan, M.; Fisher, C.K.; Chaney, N.W.; Zhan, W.; Crow, W.T.; Aires, F.; Entekhabi, D.; Wood, E.F. Triple collocation: Beyond three estimates and separation of structural/non-structural errors. Remote Sens. Environ. 2015, 171, 299–310. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Crow, W.T. The Optimality of Potential Rescaling Approaches in Land Data Assimilation. J. Hydrometeorol. 2013, 14, 650–660. [Google Scholar] [CrossRef]
- Ekman, V.W. On the Influence of the Earth’s Rotation on Ocean-Currents; Arkiv För Matematik, Astronomi Och Fysik, Bd. 2, No. 11; Almqvist & Wiksells boktryckeri, A.-B.: Uppsala, Sweden, 1905. [Google Scholar]
- Welander, P. Wind Action on a Shallow Sea: Some Generalizations of Ekman’s Theory. Tellus 1957, 9, 45–52. [Google Scholar] [CrossRef]
- Estrade, P.; Marchesiello, P.; De Verdière, A.C.; Roy, C. Cross-shelf structure of coastal upwelling: A two —Dimensional extension of Ekman’s theory and a mechanism for inner shelf upwelling shut down. J. Mar. Res. 2008, 66, 589–616. [Google Scholar] [CrossRef]
- Cushman-Roisin, B.; Beckers, J.-M. Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects; Academic Press: Oxford, UK, 2011; Volume 101. [Google Scholar]
- Garratt, J.R. The Atmospheric Boundary Layer; Cambridge University Press: Cambridge, UK, 1994; ISBN 978-0-521-46745-2. [Google Scholar]
- Stevenson, J.W.; Niiler, P.P. Upper Ocean Heat Budget During the Hawaii-to-Tahiti Shuttle Experiment. J. Phys. Oceanogr. 1983, 13, 1894–1907. [Google Scholar] [CrossRef] [Green Version]
- Sha, J.; Jo, Y.-H.; Oliver, M.J.; Kohut, J.T.; Shatley, M.; Liu, W.T.; Yan, X.-H. A case study of large phytoplankton blooms off the New Jersey coast with multi-sensor observations. Cont. Shelf Res. 2015, 107, 79–91. [Google Scholar] [CrossRef]
- Gao, J.; Shi, M.; Chen, B.; Guo, P.; Zhao, D. Responses of the circulation and water mass in the Beibu Gulf to the seasonal forcing regimes. Acta Oceanol. Sin. 2014, 33, 1–11. [Google Scholar] [CrossRef]
- Wang, B.; Huang, F.; Wu, Z.; Yang, J.; Fu, X.; Kikuchi, K. Multi-scale climate variability of the South China Sea monsoon: A review. Dyn. Atmos. Oceans 2009, 47, 15–37. [Google Scholar] [CrossRef]
- Chao, S.-Y.; Shaw, P.-T.; Wu, S.Y. El Niño modulation of the South China Sea circulation. Prog. Oceanogr. 1996, 38, 51–93. [Google Scholar] [CrossRef]
- Zhang, Y.; Sperber, K.R.; Boyle, J.S. Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979-95 NCEP/NCAR reanalysis. Mon. Weather Rev. 1997, 125, 2605–2619. [Google Scholar] [CrossRef]
- Tang, D.; Kawamura, H.; Lee, M.-A.; Van Dien, T. Seasonal and spatial distribution of chlorophyll-a concentrations and water conditions in the Gulf of Tonkin, South China Sea. Remote Sens. Environ. 2003, 85, 475–483. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, D.; Evgeny, M. Chlorophyll Concentration Response to the Typhoon Wind-Pump Induced Upper Ocean Processes Considering Air-Sea Heat Exchange. Remote Sens. 2019, 11, 1825. [Google Scholar] [CrossRef] [Green Version]
- Wilkin, J.L. The Summertime Heat Budget and Circulation of Southeast New England Shelf Waters. J. Phys. Oceanogr. 2006, 36, 1997–2011. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Bourassa, M.A. Coupling Ocean Currents and Waves with Wind Stress over the Gulf Stream. Remote Sens. 2019, 11, 1476. [Google Scholar] [CrossRef] [Green Version]
- Thomson, R.E.; Gower, J.F.R.; Bowker, N.W. Vortex Streets in the Wake of the Aleutian Islands. Mon. Weather Rev. 1977, 105, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, R.; Ling, Z.; Bo, W.; Liu, Y. Effects of Cardamom Mountains on the formation of the winter warm pool in the gulf of Thailand. Cont. Shelf Res. 2014, 91, 211–219. [Google Scholar] [CrossRef]
Products | Variable | Time | Resolution |
---|---|---|---|
ASAR/Envisat/ESA | Normalized radar cross section | 2011/12/10 02:47 UTC | 150 m |
OISST/RSS | Sea surface temperature | 2011/01/01 –2014/12/31 | 9km, daily |
CCMP/RSS | 10 m wind vector | 2011/01/01 –2014/12/31 | 0.25°, 6-hourly |
ERA-Interim/ECMWF | 10 m wind vector | 2011/01/01 –2014/12/31 | 0.125°, 3-hourly |
ERA5/ECMWF | Latent heat flux, sensible heat flux, surface thermal radiation, surface net solar radiation, 10m wind vector | 2011/10/01 –2012/01/31 | 0.25°, hourly |
SSALTO/DUACS Sea Surface Height | Absolute dynamic topography | 2011/01/01 –2014/12/31 | 0.25°, daily |
Along Transect Distance (km) | 50 ± 10 | 150 ± 10 | 250 ± 10 | |
---|---|---|---|---|
Heat Flux/Advection Contribution (10−5) | Ekman ADV | −1.4 ± 2.2 | −3.3 ± 2.3 | −2.9 ± 2.3 |
Geo. ADV | 2.7 ± 5.1 | 3.1 ± 5.9 | 2.2 ± 7.0 | |
LHF | 0.2 ± 0.3 | 1.4 ± 1.3 | 0.8 ± 0.8 | |
Net rate | 1.5 ± 4.2 | 1.2 ± 5.4 | −0.2 ± 6.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sha, J.; Li, X.-M.; Chen, X.; Zhang, T. Satellite Observations of Wind Wake and Associated Oceanic Thermal Responses: A Case Study of Hainan Island Wind Wake. Remote Sens. 2019, 11, 3036. https://doi.org/10.3390/rs11243036
Sha J, Li X-M, Chen X, Zhang T. Satellite Observations of Wind Wake and Associated Oceanic Thermal Responses: A Case Study of Hainan Island Wind Wake. Remote Sensing. 2019; 11(24):3036. https://doi.org/10.3390/rs11243036
Chicago/Turabian StyleSha, Jin, Xiao-Ming Li, Xue’en Chen, and Tianyu Zhang. 2019. "Satellite Observations of Wind Wake and Associated Oceanic Thermal Responses: A Case Study of Hainan Island Wind Wake" Remote Sensing 11, no. 24: 3036. https://doi.org/10.3390/rs11243036