Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (192)

Search Parameters:
Keywords = heat advection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1583 KiB  
Article
Heat Transfer Characteristics of Thermosyphons Used in Vacuum Water Heaters
by Zied Lataoui, Adel M. Benselama and Abdelmajid Jemni
Fluids 2025, 10(8), 199; https://doi.org/10.3390/fluids10080199 - 31 Jul 2025
Viewed by 110
Abstract
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to [...] Read more.
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to investigate the effects of the operating conditions for a thermosyphon used in solar water heaters. The study particularly focuses on the influence of the inclination angle. Thus, a comprehensive simulation model is developed using the volume of fluid (VOF) approach. Complex and related phenomena, including two-phase flow, phase change, and heat exchange, are taken into account. To implement the model, an open-source CFD toolbox based on finite volume formulation, OpenFOAM, is used. The model is then validated by comparing numerical results to the experimental data from the literature. The obtained results show that the simulation model is reliable for investigating the effects of various operating conditions on the transient and steady-state behavior of the thermosyphon. In fact, bubble creation, growth, and advection can be tracked correctly in the liquid pool at the evaporator. The effects of the designed operating conditions on the heat transfer parameters are also discussed. In particular, the optimal tilt angle is shown to be 60° for the intermediate saturation temperature (<50 °C) and 90° for the larger saturation temperature (>60 °C). Full article
(This article belongs to the Special Issue Convective Flows and Heat Transfer)
Show Figures

Figure 1

16 pages, 5628 KiB  
Article
Contrasting Impacts of North Pacific and North Atlantic SST Anomalies on Summer Persistent Extreme Heat Events in Eastern China
by Jiajun Yao, Lulin Cen, Minyu Zheng, Mingming Sun and Jingnan Yin
Atmosphere 2025, 16(8), 901; https://doi.org/10.3390/atmos16080901 - 24 Jul 2025
Viewed by 284
Abstract
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) [...] Read more.
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) and North Atlantic (NA) sea surface temperature (SST) anomalies on PHEs over China. Key findings include the following: (1) PHEs exhibit heterogeneous spatial distribution, with the Yangtze-Huai River Valley as the hotspot showing the highest frequency and intensity. A regime shift occurred post-2000, marked by a threefold increase in extreme indices (+3σ to +4σ). (2) Observational analyses reveal significant but independent correlations between PHEs and SST anomalies in the tropical NWP and mid-high latitude NA. (3) Numerical experiments demonstrate that NWP warming triggers a meridional dipole response (warming in southern China vs. cooling in the north) via the Pacific–Japan teleconnection pattern, characterized by an eastward-retreated and southward-shifted sub-tropical high (WPSH) coupled with an intensified South Asian High (SAH). In contrast, NA warming induces uniform warming across eastern China through a Eurasian Rossby wave train that modulates the WPSH northward. (4) Thermodynamically, NWP forcing dominates via asymmetric vertical motion and advection processes, while NA forcing primarily enhances large-scale subsidence and shortwave radiation. This study elucidates region-specific oceanic drivers of extreme heat, advancing mechanistic understanding for improved heatwave predictability. Full article
Show Figures

Figure 1

34 pages, 50713 KiB  
Article
Air Temperature Extremes in the Mediterranean Region (1940–2024): Synoptic Patterns and Trends
by Georgios Kotsias and Christos J. Lolis
Atmosphere 2025, 16(7), 852; https://doi.org/10.3390/atmos16070852 - 13 Jul 2025
Viewed by 483
Abstract
Extreme air temperatures along with the synoptic conditions leading to their appearance are examined for the Mediterranean region for the 85-year period of 1940–2024. The data used are daily (04UTC and 12UTC) grid point (1° × 1°) values of 2 m air temperature, [...] Read more.
Extreme air temperatures along with the synoptic conditions leading to their appearance are examined for the Mediterranean region for the 85-year period of 1940–2024. The data used are daily (04UTC and 12UTC) grid point (1° × 1°) values of 2 m air temperature, 850 hPa air temperature, and 1000 hPa and 500 hPa geopotential heights, obtained from the ERA5 database. For 12UTC and 04UTC, the 2 m air temperature anomalies are calculated and are used for the definition of Extremely High Temperature Days (EHTDs) and Extremely Low Temperature Days (ELTDs), respectively. Overall, 3787 EHTDs and 4872 ELTDs are defined. It is found that EHTDs are evidently more frequent in recent years (increased by 305% since the 1980s) whereas ELTDs are less frequent (decreased by 41% since the 1980s), providing a clear sign of warming of the Mediterranean climate. A multivariate statistical analysis combining factor analysis and k-means clustering, known as spectral clustering, is applied to the data resulting in the definition of nine EHTD and seven ELTD clusters. EHTDs are mainly associated with intense solar heating, blocking anticyclones and warm air advection. ELTDs are connected to intense radiative cooling of the Earth’s surface, cold air advection and Arctic outbreaks. This is a unique study for the Mediterranean region utilizing the high-resolution ERA5 data collected since the 1940s to define and investigate the variability of both high and low temperature extremes using a validated methodology. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

24 pages, 8945 KiB  
Article
Chronological and Geochemical Characteristics of a Newly Discovered Biotite Granite Porphyry in the Zhuxi W-Cu Polymetallic Deposit, Jiangxi Province, South China: Implications for Cu Mineralization
by Yongpeng Ouyang, Qi Chen, Runling Zeng and Tongfei Li
Minerals 2025, 15(6), 624; https://doi.org/10.3390/min15060624 - 9 Jun 2025
Viewed by 315
Abstract
Multiple occurrences of adakitic rocks, with crystallization ages clustering around ~160 Ma, have been documented in the Zhuxi district, northeast Jiangxi Province, South China. This research identifies a new adakitic biotite granite porphyry within the Zhuxi W-Cu polymetallic deposit. Zircon U-Pb geochronology of [...] Read more.
Multiple occurrences of adakitic rocks, with crystallization ages clustering around ~160 Ma, have been documented in the Zhuxi district, northeast Jiangxi Province, South China. This research identifies a new adakitic biotite granite porphyry within the Zhuxi W-Cu polymetallic deposit. Zircon U-Pb geochronology of this porphyry yields a crystallization age of 161.6 ± 2.1 Ma. Integrated with previously published data, the adakitic rocks in the study area—comprising diorite porphyrite, biotite quartz monzonite porphyry, and the newly identified biotite granite porphyry—are predominantly calc-alkaline and peraluminous. They exhibit enrichment in light rare-earth elements (LREEs) and depletion in heavy rare-earth elements (HREEs), with slight negative Eu anomalies. The trace element patterns are characterized by enrichment in Ba, U, K, Pb, and Sr, alongside negative Nb, Ta, P, and Ti anomalies, indicative of arc-like magmatic signatures. Comparative analysis of geological and geochemical characteristics suggests that these three rock types are not comagmatic. Petrogenesis of the Zhuxi adakitic suite is linked to a dynamic tectonic regime involving Mesozoic crustal thickening, subsequent delamination, and lithospheric extension. Asthenospheric upwelling likely triggered partial melting of the overlying metasomatized lithospheric mantle, generating primary mantle-derived magmas. Underplating and advection of heat by these magmas induced partial melting of the thickened lower crust, forming the biotite granite porphyry. Partial melting of delaminated lower crustal material, interacting with the asthenosphere or asthenosphere-derived melts, likely generated the diorite porphyrite. The biotite quartz monzonite porphyry is interpreted to have formed from mantle-derived magmas that underwent assimilation of, or mixing with, silicic crustal melts during ascent. The ~160 Ma crystallization ages of these adakitic rocks are broadly contemporaneous with W-Mo mineralization in the Taqian mining area of the Zhuxi district. Furthermore, their geochemical signatures imply a prospective metallogenic setting for Cu-Mo mineralization around this period in the Taqian area. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

19 pages, 3824 KiB  
Article
Increased Frequency of Central Pacific El Niño Events Since 2000 Caused by Frequent Anomalous Warm Zonal Advection
by Lanyu Jia and Yongqing Guo
Atmosphere 2025, 16(6), 654; https://doi.org/10.3390/atmos16060654 - 28 May 2025
Viewed by 329
Abstract
Although intensive studies have documented the recent increase in the frequency of the Central Pacific (CP) El Niño events, the underlying mechanism remains unclear. This motivates us to investigate the change in the frequency of CP El Niño events. By analyzing the occurrence [...] Read more.
Although intensive studies have documented the recent increase in the frequency of the Central Pacific (CP) El Niño events, the underlying mechanism remains unclear. This motivates us to investigate the change in the frequency of CP El Niño events. By analyzing the occurrence of the CP El Niño events between 1960 and 2022, we confirm a statistically significant increase in the frequency of CP El Niño events since 2000. Over the 40 years between 1960 and 1999, eight CP El Niño events appeared. In contrast, over the 23 years between 2000 and 2022, six CP El Niño events are seen. The significant period of the CP El Niño shortens from 4–5 years to 2–3 years. The increased frequency of CP El Niño events is closely related to more frequent warm sea surface temperature (SST) anomalies in the central equatorial Pacific (5° S–5° N, 170° W–122° W) during the CP El Niño developing phase (June to October). A heat budget analysis of the mixed layer reveals that the SST variability in the central equatorial Pacific during the developing phase is determined by zonal temperature advection. The frequent anomalous warm zonal advection drives more frequent warm SST anomalies, and finally, the increased frequency of CP El Niño events, as observed. Full article
Show Figures

Figure 1

14 pages, 823 KiB  
Article
Finite Volume Method and Its Applications in Computational Fluid Dynamics
by Abdulkafi Mohammed Saeed and Thekra Abdullah Fayez Alfawaz
Axioms 2025, 14(5), 359; https://doi.org/10.3390/axioms14050359 - 10 May 2025
Cited by 1 | Viewed by 923
Abstract
Various numerical techniques have been developed to address multiple problems in computational fluid dynamics (CFD). The finite volume method (FVM) is a numerical technique used for solving partial differential equations that represent conservation laws by dividing the domain into control volumes and ensuring [...] Read more.
Various numerical techniques have been developed to address multiple problems in computational fluid dynamics (CFD). The finite volume method (FVM) is a numerical technique used for solving partial differential equations that represent conservation laws by dividing the domain into control volumes and ensuring flux balance at their boundaries. Its conservative characteristics and capability to work with both structured and unstructured grids make it suitable for addressing issues related to fluid flow, heat transfer, and diffusion. This article introduces an FVM for the linear advection and nonlinear Burgers’ equations through a fifth-order targeted essentially non-oscillatory (TENO5) scheme. Numerical experiments showcase the precision and effectiveness of TENO5, emphasizing its benefits for computational fluid dynamics (CFD) simulations. Full article
(This article belongs to the Special Issue Advancements in Applied Mathematics and Computational Physics)
Show Figures

Figure 1

16 pages, 4169 KiB  
Article
Changes in Heat and Energy During Depressurization-Induced Natural Gas Hydrate Dissociation in Porous Media
by Mengchen Zhu, Haitao Zhang, Yunwei Shi, Jiaxing Zhou and Liang Fu
Processes 2025, 13(4), 1023; https://doi.org/10.3390/pr13041023 - 29 Mar 2025
Cited by 1 | Viewed by 512
Abstract
Natural gas hydrates (shortened as hydrates) are expected to be a prospective alternative to traditional fossil energies. The main strategy of exploring hydrates is achieved by dissociating solid hydrates into gas and water with the depressurization method. However, we have little knowledge on [...] Read more.
Natural gas hydrates (shortened as hydrates) are expected to be a prospective alternative to traditional fossil energies. The main strategy of exploring hydrates is achieved by dissociating solid hydrates into gas and water with the depressurization method. However, we have little knowledge on the changes in heat and energy, which are implicit essences compared with explicit temperature. Thus, this study for the first time investigates the evolutionary patterns of heat and energy during hydrate dissociation, by fully coupled thermal–hydraulic–mechanical–chemical modelling. A novel numerical technique (physics-based constrained conditions) is proposed to guarantee the stability and precision of the numerical computation. The classic Masuda’s experiment is used as a case study. Results show that the cumulative conduction heat tends to increase first and then decrease during the dissociation of hydrate, while the cumulative advection heat has the tendency to increase monotonically. External heat sources increase the energy, while phase change has a reduction effect on the change in energy. The role of conduction heat is minor, but the contribution of advection heat is considerable for the change in energy. Additionally, two implications are given for lab-scale experiments and in situ engineering from the perspective of energy. Our findings provide new insights into the mechanism of hydrate dissociation and are beneficial to the real-world engineering of hydrate exploration in terms of cost evaluation. Full article
Show Figures

Figure 1

23 pages, 18319 KiB  
Article
Low-Altitude, Overcooled Scree Slope: Insights into Temperature Distribution Using High-Resolution Thermal Imagery in the Romanian Carpathians
by Andrei Ioniță, Iosif Lopătiță, Petru Urdea, Oana Berzescu and Alexandru Onaca
Land 2025, 14(3), 607; https://doi.org/10.3390/land14030607 - 13 Mar 2025
Viewed by 665
Abstract
Advective heat fluxes (chimney effect) in porous debris facilitate ground cooling on scree slopes, even at low altitudes, and promote the occurrence of sporadic permafrost. The spatial distribution of ground surface temperature on an overcooled, low-altitude scree slope in the Romanian Carpathians was [...] Read more.
Advective heat fluxes (chimney effect) in porous debris facilitate ground cooling on scree slopes, even at low altitudes, and promote the occurrence of sporadic permafrost. The spatial distribution of ground surface temperature on an overcooled, low-altitude scree slope in the Romanian Carpathians was analyzed using UAV-based infrared thermography in different seasons. The analysis revealed significant temperature gradients within the scree slope, with colder, forest-insulated lower sections contrasting with warmer, solar-exposed upper regions. Across all surveyed seasons, this pattern remained evident, with the strongest temperature contrasts in December and April. February exhibited the most stable temperatures, with thermal readings primarily corresponding to snow surfaces rather than exposed rock. Rock surfaces displayed greater temperature variation than vent holes. Vent holes were generally cooler than rock surfaces, particularly in warmer periods. The persistent presence of ice and low temperatures at the end of the warm season suggested the potential existence of isolated permafrost. The results confirm the chimney effect, where cold air infiltrates the lower talus, gradually warms as it ascends, and outflows at higher elevations. UAV-based thermal imagery proved effective in detecting microclimatic variability and elucidating thermal processes governing talus slopes. This study provides valuable insights into extrazonal permafrost behavior, particularly in the context of global climate change. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

23 pages, 29026 KiB  
Article
Urban Impacts on Convective Squall Lines over Chicago in the Warm Season—Part I: Observations of Multi-Scale Convective Evolution
by Michael L. Kaplan, S. M. Shajedul Karim and Yuh-Lang Lin
Atmosphere 2025, 16(3), 306; https://doi.org/10.3390/atmos16030306 - 6 Mar 2025
Cited by 1 | Viewed by 882
Abstract
In this study, our aim is to diagnose how two quasi-linear convective systems (QLCS) are organized so one can determine the possible role of the city of Chicago, IL, USA, in modifying convective precipitation systems. In this Part I of a two-part study, [...] Read more.
In this study, our aim is to diagnose how two quasi-linear convective systems (QLCS) are organized so one can determine the possible role of the city of Chicago, IL, USA, in modifying convective precipitation systems. In this Part I of a two-part study, we employ large-scale analyses, radiosonde soundings, surface observations, and Doppler radar data to diagnose the precursor atmospheric circulations that organize the evolution of two mesoscale convective systems and compare those circulations to radar and precipitation. Several multi-scale processes are found that organize and modify convection over the Chicago metroplex. Two sequential quasi-linear convective systems (QLCS #1 and #2) were organized that propagated over Chicago, IL, USA, during an eight-hour period on 5–6 July 2018. The first squall line (QLCS #1) built from the southwest to the northeast while strengthening as it propagated over the city, and the second (QLCS #2) propagated southeastwards and weakened as it passed over the city in association with a polar cold front. The weak upper-level divergence associated with a diffluent flow poleward of an expansive ridge built over and strengthened a low-level trough and confluence zone, triggering QLCS #1. Convective downdrafts from QLCS #1 produced a cold pool that interacted with multiple confluent low-level jets surrounding and focused on the metroplex urban heat island, thus advecting the convection poleward over the metroplex. The heaviest precipitation occurred just south-southeast of Midway Airport, Chicago. Subsequently, a polar cold front propagated into the metroplex, which triggered QLCS #2. However, the descending air above it under the polar jet and residual cold pool from QLCS #1 rapidly dissipated the cold frontal convection. This represents a case study where very active convection built over the metroplex and was likely modified by it, as evidenced in numerical simulations to be described in Part II. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

26 pages, 4827 KiB  
Article
Influencing Factors of the Sub-Seasonal Forecasting of Extreme Marine Heatwaves: A Case Study for the Central–Eastern Tropical Pacific
by Lin Lin, Yueyue Yu, Chuhan Lu, Guotao Liu, Jiye Wu and Jingjia Luo
Remote Sens. 2025, 17(5), 810; https://doi.org/10.3390/rs17050810 - 25 Feb 2025
Viewed by 797
Abstract
Seven extreme marine heatwave (MHW) events that occurred in the central–eastern tropical Pacific over the past four decades are divided into high-(MHW#1 and #2), moderate-(MHW#3–5), and low-predictive (MHW#6 and #7) categories based on the accuracy of the 30–60d forecast by the Nanjing University [...] Read more.
Seven extreme marine heatwave (MHW) events that occurred in the central–eastern tropical Pacific over the past four decades are divided into high-(MHW#1 and #2), moderate-(MHW#3–5), and low-predictive (MHW#6 and #7) categories based on the accuracy of the 30–60d forecast by the Nanjing University of Information Science and Technology Climate Forecast System (NUIST CFS1.1). By focusing on high- and low-predictive MHWs, we found that metrics indicative of strong and severe warming (S > 2 and S > 3, where S is MHW severity index) pose greater challenges for accurate forecasting, with the biggest disparity observed for S > 2. All events are intertwined with the El Niño–Southern Oscillation (ENSO), yet a robust ENSO forecast does not guarantee a good MHW forecast. Heat budget analysis within the surface mixed layer during the rapid warming periods revealed that the moderate and severe warming in MHW#1, #2, #6 are primarily caused by heat convergence due to advection (Adv), whereas MHW#7 is mainly driven by air–sea heat flux into the sea surface (Q). The NUIST CFS1.1 model better captures Adv than Q. High-predictive events exhibit a greater contribution from Adv, especially the zonal component associated with the zonal gradient of sea surface temperature anomalies, which may explain their higher sub-seasonal forecast skills. Full article
Show Figures

Figure 1

18 pages, 6283 KiB  
Article
A Study on Adjusting Vertical Diffusion of Temperature in Tidal Flats to Improve SST of Coastal Models
by Bon-Ho Gu, Jin-Yong Choi, Sung-Hwan Park and Nam-Hoon Kim
Water 2025, 17(4), 474; https://doi.org/10.3390/w17040474 - 8 Feb 2025
Viewed by 749
Abstract
This study proposes improving the process of the vertical diffusion of temperature in numerical models to enhance the accuracy of sea surface temperature (SST) simulation. SST tends to be underestimated in the coastal and tidal flat regions, such as the Yellow Sea around [...] Read more.
This study proposes improving the process of the vertical diffusion of temperature in numerical models to enhance the accuracy of sea surface temperature (SST) simulation. SST tends to be underestimated in the coastal and tidal flat regions, such as the Yellow Sea around Korea. In particular, SST in coastal areas is highly sensitive to wet/dry treatment, implying that the sensitivity of SST increases with the slope of coastal bathymetry. Therefore, during the calculation of vertical temperature diffusion terms, the numerical model’s surface boundary condition (SBC) was modified to limit excessive temperature differences below a certain depth in the coastal regions. Under wet or dry conditions defined by the wet/dry treatment, SBC and bottom boundary condition (BBC) adjustments are stabilized within a predefined depth limit. While horizontal diffusion also plays a role in the model, SST is significantly influenced by the balance of heat advection and shortwave radiation. To demonstrate this, Heat Limit Depth (HLD) was added as an input parameter into the vertical diffusion algorithm in the model to enhance sensitivity to the SBC. If the total water depth in the tidal flat is below the HLD and less than 1.0 m, the model is changed to estimate surface sediment temperature instead of SST. The improvement in the vertical diffusion term for SST was effective primarily in tidal flat areas. In contrast, the impact was less pronounced in coastal areas with average depths exceeding 5 m. The rationale for separating SBC and BBC in the improved air–sea interaction process is twofold: SBC adjustments are suitable for reducing heat flux effects, specifically in shallow depths or tidal flats, without significantly affecting the entire model domain, while combined SBC and BBC adjustments are more appropriate for inducing coastal SST changes across the domain. Full article
(This article belongs to the Special Issue Application of Numerical Modeling in Estuarine and Coastal Dynamics)
Show Figures

Figure 1

22 pages, 14231 KiB  
Article
Quantitative Simulation and Planning for the Heat Island Mitigation Effect in Sponge City Planning: A Case Study of Chengdu, China
by Qingjuan Yang, Ziqi Lin and Qiaozi Li
Land 2025, 14(2), 264; https://doi.org/10.3390/land14020264 - 26 Jan 2025
Viewed by 1065
Abstract
The implementation of sponge cities in China modifies the hydrological conditions of the underlying surface, effectively alleviating the urban heat island effect. However, in planning and construction, heat island mitigation targets are difficult to quantify and lack quantitative design and evaluation methods. To [...] Read more.
The implementation of sponge cities in China modifies the hydrological conditions of the underlying surface, effectively alleviating the urban heat island effect. However, in planning and construction, heat island mitigation targets are difficult to quantify and lack quantitative design and evaluation methods. To address this issue, two planning schemes were proposed based on sponge city management and control indicators. The WRF-UCM model was used to conduct numerical simulations of the current conditions (case 1) and the sponge city planning schemes (cases 2 and 3), analyzing the impact of sponge city initiatives on the mitigation of the heat island effect. The results indicated that by changing the structure of the underlying surface and increasing the water content of the underlying surface, the sponge city affects the urban energy distribution process and regional horizontal advection pattern. This not only reduces heat accumulation within the urban area but also suppresses regional convection during high-temperature periods, thereby mitigating the urban heat island effect. Moreover, different schemes following the same sponge city design requirements have varying impacts on urban microclimate elements and heat island distributions. Notably, a higher subsurface water content yields a more pronounced inhibition of the heat island effect. Finally, a sponge city planning method with the consideration of heat island mitigation was proposed, facilitating pre-simulation optimization and decision-making in sponge city planning. Full article
(This article belongs to the Special Issue Land Use Planning, Sustainability and Disaster Risk Reduction)
Show Figures

Figure 1

16 pages, 4408 KiB  
Article
Dynamic Heat Transfer Modeling and Validation of Super-Long Flexible Thermosyphons for Shallow Geothermal Applications
by Jianhua Liu, Yanghuiqin Ding, Hao Liu, Liying Zheng, Xiaoyuan Wang and Yuezhao Zhu
Energies 2025, 18(2), 433; https://doi.org/10.3390/en18020433 - 20 Jan 2025
Viewed by 891
Abstract
In comparison to borehole heat exchangers that rely on forced convection, super-long thermosyphons offer a more efficient approach to extracting shallow geothermal energy. This work conducted field tests on a super-long flexible thermosyphon (SFTS) to evaluate its heat transfer characteristics. The tests investigated [...] Read more.
In comparison to borehole heat exchangers that rely on forced convection, super-long thermosyphons offer a more efficient approach to extracting shallow geothermal energy. This work conducted field tests on a super-long flexible thermosyphon (SFTS) to evaluate its heat transfer characteristics. The tests investigated the effects of cooling water temperature and the inclination angle of the condenser on the start-up characteristics and steady-state heat transfer performance. Based on the field test results, the study proposed a dynamic heat transfer modeling method for SFTSs using the equivalent thermal conductivity (ETC) model. Furthermore, a full-scale 3D CFD model for geothermal extraction via SFTS was developed, taking into account weather conditions and groundwater advection. The modeling validation showed that the simulation results aligned well with the temperature and heat transfer power variations observed in the field tests when the empirical coefficient in the ETC model was specified as 2. This work offers a semi-empirical dynamic heat transfer modeling method for geothermal thermosyphons, which can be readily incorporated into the overall simulation of a geothermal system that integrates thermosyphons. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

17 pages, 1324 KiB  
Article
Numerical Fit Modeling for Temperature Mitigation in Arid Cities
by Alan S. Hoback
Appl. Sci. 2025, 15(1), 285; https://doi.org/10.3390/app15010285 - 31 Dec 2024
Viewed by 820
Abstract
The purpose of the study is to develop a general method to predict local temperature changes from mitigating the urban heat island effect using local climate engineering. Specifically, the effects of a plume of calcite particles above cities have been found. Previous modeling [...] Read more.
The purpose of the study is to develop a general method to predict local temperature changes from mitigating the urban heat island effect using local climate engineering. Specifically, the effects of a plume of calcite particles above cities have been found. Previous modeling work has been carried out with supercomputers, but those models have limited geographies and timelines. The main goal of this work is to produce a method that can be applied more generally and more quickly. This overcomes limited modeling data in arid regions. Arid cities show the most effective use of calcite plumes for local solar radiation management, but those areas have limited data. The new method is to use numerical fit techniques using actual weather data. The default heating and cooling rates are fit to historic rates, and then the radiative properties of the calcite are used to predict the change in the heat transfer rates. Air temperatures at a standard height of 2 m are predicted. The key findings are that the numerical fit gives comparable results to the full supercomputer model, but the numerical fit gives predictions of greater temperature change. This was explained as primarily due to how advection is handled differently by the methods. Adjustments in the methods are discussed so that the effect of advection is included. The conclusion is that numerical fit provides a method that can easily be applied to arid regions. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

39 pages, 25059 KiB  
Article
Exploratory Study of a Green Function Based Solver for Nonlinear Partial Differential Equations
by Pablo Solano-López, Jorge Saavedra and Raúl Molina
Algorithms 2024, 17(12), 564; https://doi.org/10.3390/a17120564 - 10 Dec 2024
Cited by 1 | Viewed by 1048
Abstract
This work explores the numerical translation of the weak or integral solution of nonlinear partial differential equations into a numerically efficient, time-evolving scheme. Specifically, we focus on partial differential equations separable into a quasilinear term and a nonlinear one, with the former defining [...] Read more.
This work explores the numerical translation of the weak or integral solution of nonlinear partial differential equations into a numerically efficient, time-evolving scheme. Specifically, we focus on partial differential equations separable into a quasilinear term and a nonlinear one, with the former defining the Green function of the problem. Utilizing the Green function under a short-time approximation, it becomes possible to derive the integral solution of the problem by breaking it into three integral terms: the propagation of initial conditions and the contributions of the nonlinear and boundary terms. Accordingly, we follow this division to describe and separately analyze the resulting algorithm. To ensure low interpolation error and accurate numerical Green functions, we adapt a piecewise interpolation collocation method to the integral scheme, optimizing the positioning of grid points near the boundary region. At the same time, we employ a second-order quadrature method in time to efficiently implement the nonlinear terms. Validation of both adapted methodologies is conducted by applying them to problems with known analytical solution, as well as to more challenging, norm-preserving problems such as the Burgers equation and the soliton solution of the nonlinear Schrödinger equation. Finally, the boundary term is derived and validated using a series of test cases that cover the range of possible scenarios for boundary problems within the introduced methodology. Full article
(This article belongs to the Section Analysis of Algorithms and Complexity Theory)
Show Figures

Figure 1

Back to TopTop