Abstract
With the advancement of artificial intelligence and educational informatization, there is a growing demand for intelligent teaching assistance systems in universities. Focusing on the university “Algorithms” course in the computer science department, this study develops a multi-terminal collaborative knowledge service system, Course-Oriented Knowledge Service–Based AI Teaching Assistant System (CKS-AITAS), which consists of a PC terminal and a mobile terminal, where the PC terminal integrates functions including knowledge graph, semantic retrieval, intelligent question-answering, and knowledge recommendation. While the mobile terminal enables classroom check-in and teaching interaction, thus forming a closed-loop platform for teaching organization, resource acquisition, and knowledge inquiry. For the document retrieval module, paragraph-level semantic modeling of textbook content is conducted using Word2Vec, combined with approximate nearest neighbor indexing, and this module achieves an MRR@10 of 0.641 and an average query time of 0.128 s, balancing accuracy and efficiency; the intelligent question-answering module, based on a self-built course FAQ dataset, is trained via the BERT model to enable question matching and answer retrieval, achieving an accuracy rate of 86.3% and an average response time of 0.31 s. Overall, CKS-AITAS meets the core teaching needs of the course, provides an AI-empowered solution for university teaching, and boasts promising application prospects in facilitating education sustainability.