You are currently on the new version of our website. Access the old version .
SustainabilitySustainability
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

21 January 2026

Diurnal–Seasonal Contrast of Spatiotemporal Dynamic and the Key Determinants of Surface Urban Heat Islands Across China’s Humid and Arid Regions

,
and
1
College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
2
Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China
3
Shaanxi Xi’an Urban Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Xi’an 710127, China
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Remote Sensing and Spatial Analysis for Monitoring and Assessing Landscape and Ecosystem Sustainability

Abstract

Regional management of the urban thermal environment is essential for sustainable development. However, both the surface urban heat island (SUHI) spatiotemporal patterns and driving mechanisms across humid–arid regions remain uncertain. Therefore, 329 cities from various humid–arid regions were selected to investigate the interannual, seasonal, and diurnal distribution characteristics of SUHIs across regions. By constructing six-dimensional influencing factors and using CatBoost-SHAP and SEM methods, the contributions and action pathways of these factors to SUHIs were analyzed across humid–arid regions. The influence mechanisms, differences in feature importance, and similarities and discrepancies in action pathways were thoroughly examined. The findings are as follows: 1. During the day, higher SUHII values occur in humid and semihumid regions, exceeding those in arid and semiarid regions by 1.521 and 0.921, respectively. At night, arid and semiarid regions exhibit UHI effects (SUHII > 0). The SUHI distribution across humid–arid regions demonstrates seasonal variations. 2. ΔSA and ΔNDVI are stable dominant influencing factors across all regions. The contribution rank varies along the humid–arid region: Pollution factors are more important in arid and semiarid regions, whereas surface features and 2D/3D dominate in humid and semihumid regions at night. 3. SUHI regulation by influencing factors across humid–arid regions follows both similar paths and regional variations. This study reveals the SUHI distribution across humid–arid regions and provides reference data for regional thermal environment management.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.