Climate Responsive Green Building Strategies in Circular Cities: A Comparative Study for Two Regions
Abstract
:1. Introduction
1.1. Green Building Practices and Circular Economy
1.2. Green Building Approaches and Innovative Solutions
1.3. Research Questions
- RQ1: How do architects in Belgrade (Serbia) and Podgorica (Montenegro) with different climates integrate climate-responsive strategies into green building designs, and what challenges do they face in implementing these strategies?
- RQ2: What are the key differences in the application of circular economy principles in green building projects between cities with different climates considering their distinct climate zones?
- RQ3: How do locally available materials and technologies in cities with different climates influence the adoption of climate-responsive green building practices in line with circular city objectives?
2. Literature Review
2.1. Climate Adaptive Architecture and Urbanism
2.2. Circular City Indicators
3. Methodology
3.1. Research and Questionnaire Design
3.2. Hypothesis Development
3.3. Sample Description
3.4. Data Analysis
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brglez, K.; Perc, M.; Lukman, R.K. The complexity and interconnectedness of circular cities and the circular economy for sustainability. Sustain. Dev. 2024, 32, 2049–2065. [Google Scholar] [CrossRef]
- Brandsma, S.; Lenzholzer, S.; Carsjens, G.J.; Brown, R.D.; Tavares, S. Implementation of urban climate-responsive design strategies: An international overview. J. Urban Des. 2024, 29, 598–623. [Google Scholar] [CrossRef]
- Lucchi, E.; Turati, F.; Colombo, B.; Schito, E. Climate-responsive design practices: A transdisciplinary methodology for achieving sustainable development goals in cultural and natural heritage. J. Clean. Prod. 2024, 457, 142431. [Google Scholar] [CrossRef]
- Chen, M.; Chen, L.; Cheng, J.; Yu, J. Identifying interlinkages between urbanization and Sustainable Development Goals. Geogr. Sustain. 2022, 3, 339–346. [Google Scholar] [CrossRef]
- NÆss, P. Urban planning and sustainable development. Eur. Plan. Stud. 2001, 9, 503–524. [Google Scholar] [CrossRef]
- Williams, J. Circular cities. Urban Stud. 2019, 56, 2746–2762. [Google Scholar] [CrossRef]
- Paiho, S.; Mäki, E.; Wessberg, N.; Paavola, M.; Tuominen, P.; Antikainen, M.; Heikkilä, J.; Rozado, C.A.; Jung, N. Towards circular cities—Conceptualizing core aspects. Sustain. Cities Soc. 2020, 59, 102143. [Google Scholar] [CrossRef]
- Teng, J.; Mu, X.; Wang, W.; Xu, C.; Liu, W. Strategies for sustainable development of green buildings. Sustain. Cities Soc. 2019, 44, 215–226. [Google Scholar] [CrossRef]
- Olubunmi, O.A.; Xia, P.B.; Skitmore, M. Green building incentives: A review. Renew. Sustain. Energy Rev. 2016, 59, 1611–1621. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C. Strategies to promote green building technologies adoption in developing countries: The case of Ghana. Build. Environ. 2018, 130, 74–84. [Google Scholar] [CrossRef]
- Chan, A.P.C.; Darko, A.; Ameyaw, E.E. Strategies for Promoting Green Building Technologies Adoption in the Construction Industry—An International Study. Sustainability 2017, 9, 969. [Google Scholar] [CrossRef]
- Ladu, L.; Blind, K. Overview of policies, standards and certifications supporting the European bio-based economy. Curr. Opin. Green Sustain. Chem. 2017, 8, 30–35. [Google Scholar] [CrossRef]
- Morone, P.; Caferra, R.; D’Adamo, I.; Falcone, P.M.; Imbert, E.; Morone, A. Consumer willingness to pay for bio-based products: Do certifications matter? Int. J. Prod. Econ. 2021, 240, 108248. [Google Scholar] [CrossRef]
- Kushch, E.; Grudina, O.; Sitokhova, T. Digital Solution in Circular Economy Frameworks. Reliab. Theory Appl. 2024, 6, 1202–1207. [Google Scholar]
- Komatina, D.; Miletić, M.; Mosurović Ružičić, M. Embracing Artificial Intelligence (AI) in Architectural Education: A Step towards Sustainable Practice? Buildings 2024, 14, 2578. [Google Scholar] [CrossRef]
- Butturi, M.A.; Neri, A.; Mercalli, F.; Gamberini, R. Sustainability-Oriented Innovation in the Textile Manufacturing Industry: Pre-Consumer Waste Recovery and Circular Patterns. Environments 2025, 12, 82. [Google Scholar] [CrossRef]
- Zaniboni, L.; Albatici, R. Natural and Mechanical Ventilation Concepts for Indoor Comfort and Well-Being with a Sustainable Design Perspective: A Systematic Review. Buildings 2022, 12, 1983. [Google Scholar] [CrossRef]
- Ching, F.D.K.; Shapiro, I.M. Green Building Illustrated. 2021, p. 326. Available online: https://books.google.com/books/about/Green_Building_Illustrated.html?hl=sr&id=I_UFEAAAQBAJ (accessed on 21 March 2025).
- Yang, Y.; Haurie, L.; Wang, D.Y. Bio-based materials for fire-retardant application in construction products: A review. J. Therm. Anal. Calorim. 2021, 147, 6563–6582. [Google Scholar] [CrossRef]
- Aghili, N.; Bin Mohammed, A.H.; Sheau-Ting, L. Key Practice for Green Building Management In Malaysia. MATEC Web Conf. 2016, 66, 00040. [Google Scholar] [CrossRef]
- Saleh, R.M.; Al-Swidi, A. The adoption of green building practices in construction projects in Qatar: A preliminary study. Manag. Environ. Qual. Int. J. 2019, 30, 1238–1255. [Google Scholar] [CrossRef]
- Milovanović, V.; Janošević, S.; Paunović, M. Quality management and business performance of Serbian companies. Ekon. Preduz. 2021, 69, 345–356. [Google Scholar] [CrossRef]
- Paul, W.L.; Taylor, P.A. A comparison of occupant comfort and satisfaction between a green building and a conventional building. Build. Environ. 2008, 43, 1858–1870. [Google Scholar] [CrossRef]
- Miletić, M.; Komatina, D.; Babić, L.; Lukić, J. Evaluating Energy Retrofit and Indoor Environmental Quality in a Serbian Sports Facility: A Comprehensive Case Study. Appl. Sci. 2024, 14, 9401. [Google Scholar] [CrossRef]
- Kosanović, S.; Miletić, M.; Marković, L. Energy refurbishment of family houses in serbia in line with the principles of circular economy. Sustainability 2021, 13, 5463. [Google Scholar] [CrossRef]
- Mukhtar, A.; Yusoff, M.Z.; Ng, K.C. The potential influence of building optimization and passive design strategies on natural ventilation systems in underground buildings: The state of the art. Tunn. Undergr. Sp. Technol. 2019, 92, 103065. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Green roofs: A critical review on the role of components, benefits, limitations and trends. Renew. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- Bellini, E.; Macchi, A. Architectural Adaptability: Constructing Resilient Cities. 2022. Available online: https://flore.unifi.it/handle/2158/1282214 (accessed on 3 February 2025).
- Houghton, A.; Castillo-Salgado, C. Analysis of correlations between neighborhood-level vulnerability to climate change and protective green building design strategies: A spatial and ecological analysis. Build. Environ. 2020, 168, 106523. [Google Scholar] [CrossRef]
- Hoffman, M.; Shaw, R.; Santos, F.D.; Ferreira, P.L.; Strandsbjerg, J.; Pedersen, T. The Climate Change Challenge: A Review of the Barriers and Solutions to Deliver a Paris Solution. Climate 2022, 10, 75. [Google Scholar] [CrossRef]
- Campbell-Lendrum, D.; Neville, T.; Schweizer, C.; Neira, M. Climate change and health: Three grand challenges. Nat. Med. 2023, 29, 1631–1638. [Google Scholar] [CrossRef]
- Forster, P.M.; Smith, C.J.; Walsh, T.; Lamb, W.F.; Lamboll, R.; Hauser, M.; Ribes, A.; Rosen, D.; Gillett, N.; Palmer, M.D.; et al. Indicators of Global Climate Change 2022: Annual update of large-scale indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 2023, 15, 2295–2327. [Google Scholar] [CrossRef]
- Khaliq, W.; Mansoor, U. Bin Performance evaluation for energy efficiency attainment in buildings based on orientation, temperature, and humidity parameters. Intell. Build. Int. 2022, 14, 606–622. [Google Scholar] [CrossRef]
- Mendes, A.M.; Monteiro, C.M.; Santos, C. Green Roofs Hydrological Performance and Contribution to Urban Stormwater Management. Water Resour. Manag. 2024, 39, 1015–1031. [Google Scholar] [CrossRef]
- Cheval, S.; Amihăesei, V.A.; Chitu, Z.; Dumitrescu, A.; Falcescu, V.; Irașoc, A.; Micu, D.M.; Mihulet, E.; Ontel, I.; Paraschiv, M.G.; et al. A systematic review of urban heat island and heat waves research (1991–2022). Clim. Risk Manag. 2024, 44, 100603. [Google Scholar] [CrossRef]
- Zakari, A.; Khan, I.; Tan, D.; Alvarado, R.; Dagar, V. Energy efficiency and sustainable development goals (SDGs). Energy 2022, 239, 122365. [Google Scholar] [CrossRef]
- Akhimien, N.G.; Latif, E.; Hou, S.S. Application of circular economy principles in buildings: A systematic review. J. Build. Eng. 2021, 38, 102041. [Google Scholar] [CrossRef]
- Ragheb, A.; El-Shimy, H.; Ragheb, G. Green Architecture: A Concept of Sustainability. Procedia—Soc. Behav. Sci. 2016, 216, 778–787. [Google Scholar] [CrossRef]
- Elaouzy, Y.; El Fadar, A. Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review. Renew. Sustain. Energy Rev. 2022, 167, 112828. [Google Scholar] [CrossRef]
- Li, B.; Guo, W.; Liu, X.; Zhang, Y.; Russell, P.J.; Schnabel, M.A. Sustainable Passive Design for Building Performance of Healthy Built Environment in the Lingnan Area. Sustainability 2021, 13, 9115. [Google Scholar] [CrossRef]
- Yang, L.; Fu, R.; He, W.; He, Q.; Liu, Y. Adaptive thermal comfort and climate responsive building design strategies in dry–hot and dry–cold areas: Case study in Turpan, China. Energy Build. 2020, 209, 109678. [Google Scholar] [CrossRef]
- Zarzycki, A.; Decker, M. Climate-adaptive buildings: Systems and materials. Int. J. Archit. Comput. 2019, 17, 166–184. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Bhamare, D.K.; Rathod, M.K.; Banerjee, J. Passive cooling techniques for building and their applicability in different climatic zones—The state of art. Energy Build. 2019, 198, 467–490. [Google Scholar] [CrossRef]
- Urban and Architectural Heritage Conservation within Sustainability. 2019. Available online: https://books.google.com/books/about/Urban_and_Architectural_Heritage_Conserv.html?hl=sr&id=Npn8DwAAQBAJ (accessed on 16 February 2025).
- Scagnelli, S.D.; Ranjbari, M.; Fagone, C.; Santamicone, M.; Villa, V. Architecture Engineering and Construction Industrial Framework for Circular Economy: Development of a Circular Construction Site Methodology. Sustainability 2023, 15, 1813. [Google Scholar] [CrossRef]
- Genovese, P.V.; Zoure, A.N. Architecture trends and challenges in sub-Saharan Africa’s construction industry: A theoretical guideline of a bioclimatic architecture evolution based on the multi-scale approach and circular economy. Renew. Sustain. Energy Rev. 2023, 184, 113593. [Google Scholar] [CrossRef]
- Gudekli, A.; Dogan, M.E.; Dogan, T.G.; Gudekli, D. Gender, Sustainability, and Urbanism: A Systematic Review of Literature and Cross-Cluster Analysis. Sustainability 2023, 15, 14994. [Google Scholar] [CrossRef]
- Kanters, J. Circular Building Design: An Analysis of Barriers and Drivers for a Circular Building Sector. Buildings 2020, 10, 77. [Google Scholar] [CrossRef]
- When not every response to climate change is a good one: Identifying principles for sustainable adaptation. Clim. Dev. 2011, 3, 7–20. [CrossRef]
- Dodds, R.; Kelman, I. How Climate Change is Considered in Sustainable Tourism Policies: A Case of The Mediterranean Islands of Malta and Mallorca. Tour. Rev. Int. 2008, 12, 57–70. [Google Scholar] [CrossRef]
- Childers, D.L.; Cadenasso, M.L.; Morgan Grove, J.; Marshall, V.; McGrath, B.; Pickett, S.T.A. An Ecology for Cities: A Transformational Nexus of Design and Ecology to Advance Climate Change Resilience and Urban Sustainability. Sustainability 2015, 7, 3774–3791. [Google Scholar] [CrossRef]
- Sayigh, A. Sustainability, Energy and Architecture: Case Studies in Realizing Green Buildings. 2014, p. 551. Available online: https://books.google.com/books/about/Sustainability_Energy_and_Architecture.html?hl=sr&id=nkIobvJdjjwC (accessed on 17 February 2025).
- Thermal, E.; Nunzi, J.-M.; El Ganaoui, M.; El Jouad, M.; Lourenço Niza, I.; Mendes da Luz, I.; Maria Bueno, A.; Eduardo Broday, E. Thermal Comfort and Energy Efficiency: Challenges, Barriers, and Step towards Sustainability. Smart Cities 2022, 5, 1721–1741. [Google Scholar] [CrossRef]
- Saraiva, T.S.; de Almeida, M.; Bragança, L.; Barbosa, M.T. Environmental Comfort Indicators for School Buildings in Sustainability Assessment Tools. Sustainability 2018, 10, 1849. [Google Scholar] [CrossRef]
- Reith, A.; Orova, M. Do green neighbourhood ratings cover sustainability? Ecol. Indic. 2015, 48, 660–672. [Google Scholar] [CrossRef]
- Alyami, S.H.; Rezgui, Y. Sustainable building assessment tool development approach. Sustain. Cities Soc. 2012, 5, 52–62. [Google Scholar] [CrossRef]
- Santos, P.; Cervantes, G.C.; Zaragoza-Benzal, A.; Byrne, A.; Karaca, F.; Ferrández, D.; Salles, A.; Bragança, L. Circular Material Usage Strategies and Principles in Buildings: A Review. Buildings 2024, 14, 281. [Google Scholar] [CrossRef]
- Hsu, W.L.; Meen, T.H.; Yang, H.C.; Yu, W. Der Special Issue on Innovative Circular Building Design and Construction. Buildings 2023, 13, 1322. [Google Scholar] [CrossRef]
- Li, M.; Ou, W.; Chai, X.; Khodabakhshi, H.; Fu, Z.; Yuan, J.; Horimbere, P.F.; Urban, E.D.L.J.; Makvandi, M.; Li, W.; et al. Urban Heat Mitigation towards Climate Change Adaptation: An Eco-Sustainable Design Strategy to Improve Environmental Performance under Rapid Urbanization. Atmosphere 2023, 14, 638. [Google Scholar] [CrossRef]
- Ruíz, M.A.; Mack-Vergara, Y.L. Resilient and Sustainable Housing Models against Climate Change: A Review. Sustainability 2023, 15, 13544. [Google Scholar] [CrossRef]
- Makvandi, M.; Li, W.; Li, Y.; Wu, H.; Khodabakhshi, Z.; Xu, X.; Yuan, P.F. Advancing Urban Resilience Amid Rapid Urbanization: An Integrated Interdisciplinary Approach for Tomorrow’s Climate-Adaptive Smart Cities—A Case Study of Wuhan, China. Smart Cities 2024, 7, 2110–2130. [Google Scholar] [CrossRef]
- Niazy, D.; Metwally, E.A.; Rifat, M.; Awad, M.I.; Elsabbagh, A. A conceptual design of circular adaptive façade module for reuse. Sci. Rep. 2023, 13, 20552. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, F.; Qiu, B.; Zhang, X.; Yu, Z.; Mao, Y.; Wang, C.; Zhang, J. Green-gray imbalance: Rapid urbanization reduces the probability of green space exposure in early 21st century China. Sci. Total Environ. 2024, 933, 173168. [Google Scholar] [CrossRef]
- de la Joie Horimbere, E.; Chen, H.; Makvandi, M. An Exploration of the Effects of Urban Block Design on the Outdoor Thermal Environment in Tropical Savannah Climate: Case Study of Nyamirambo Neighborhood of Kigali; Springer: Berlin/Heidelberg, Germany, 2021; pp. 17–28. [Google Scholar] [CrossRef]
- Dervishaj, A.; Gudmundsson, K. Parametric design workflow for solar, context-adaptive and reusable facades in changing urban environments. J. Build. Perform. Simul. 2025, 18, 161–190. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, Y. Energy-resilient climate adaptation using a tailored life-cycle integrative design approach for national carbon abatement. Cell Rep. Phys. Sci. 2024, 5, 102306. [Google Scholar] [CrossRef]
- Jelle, B.P. Accelerated climate ageing of building materials, components and structures in the laboratory. J. Mater. Sci. 2012, 47, 6475–6496. [Google Scholar] [CrossRef]
- Nordgren, J.; Stults, M.; Meerow, S. Supporting local climate change adaptation: Where we are and where we need to go. Environ. Sci. Policy 2016, 66, 344–352. [Google Scholar] [CrossRef]
- Bekier, J.; Parisi, C. Co-construction of performance indicators for a circular city and its relation to a local action net. Account. Audit. Account. J. 2023, ahead-of-print. [Google Scholar] [CrossRef]
- Balletto, G.; Ladu, M. The Role of Spatial Circular Planning in Urban Governance. A Set of Indicators to Evaluate Performance in Urban Regeneration. In Lecture Notes in Computer Science (Lecture Notes in Computer Science); Springer: Berlin/Heidelberg, Germany, 2023; Volume 14111, pp. 104–118. [Google Scholar] [CrossRef]
- Bîrgovan, A.L.; Lakatos, E.S.; Szilagyi, A.; Cioca, L.I.; Pacurariu, R.L.; Ciobanu, G.; Rada, E.C. How Should We Measure? A Review of Circular Cities Indicators. Int. J. Environ. Res. Public Health 2022, 19, 5177. [Google Scholar] [CrossRef]
- Pegorin, M.C.; Caldeira-Pires, A.; Faria, E. Interactions between a circular city and other sustainable urban typologies: A review. Discov. Sustain. 2024, 5, 14. [Google Scholar] [CrossRef]
- Falah, N.; Marrero, M.; Solis-Guzman, J. Identifying Circular City Indicators Based on Advanced Text Analytics: A Multi-Algorithmic Approach. Environments 2025, 12, 1. [Google Scholar] [CrossRef]
- Paoli, F.; Pirlone, F.; Spadaro, I. Indicators for the circular city: A review and a proposal. Sustainability 2022, 14, 11848. [Google Scholar] [CrossRef]
- Abdulateef, M.F.; Al-Alwan, H.A.S. The effectiveness of urban green infrastructure in reducing surface urban heat island. Ain Shams Eng. J. 2022, 13, 101526. [Google Scholar] [CrossRef]
- Lundaev, V.; Solomon, A.A.; Le, T.; Lohrmann, A.; Breyer, C. Review of critical materials for the energy transition, an analysis of global resources and production databases and the state of material circularity. Miner. Eng. 2023, 203, 108282. [Google Scholar] [CrossRef]
- Addas, A. The importance of urban green spaces in the development of smart cities. Front. Environ. Sci. 2023, 11, 1206372. [Google Scholar] [CrossRef]
- Transformation of the New Belgrade Urban Tissue: Filling the Space Instead of Interpolation. Available online: https://raumplan.iaus.ac.rs/handle/123456789/187 (accessed on 20 March 2025).
- Kibert, C.J. Green Building Design and Delivery. Sustain. Constr. 2016, 1, 1–36. Available online: https://books.google.rs/books?hl=sr&lr=&id=2xgWCgAAQBAJ&oi=fnd&pg=PR15&dq=80.%09Kibert,+C.J.+Green+Building+Design+and+Delivery.+Sustain.+Constr.+2016&ots=GaXp9Mc_pA&sig=tgRddmfMmtGex0ZSINgk6WDpw7U&redir_esc=y#v=onepage&q&f=false (accessed on 21 March 2025).
- Project MUSE-Design with Climate. Available online: https://muse.jhu.edu/pub/267/edited_volume/book/64523 (accessed on 11 April 2025).
- Bolger, K.; Doyon, A. Circular cities: Exploring local government strategies to facilitate a circular economy. Eur. Plan. Stud. 2019, 27, 2184–2205. [Google Scholar] [CrossRef]
- Discovering Statistics Using IBM SPSS Statistics—Andy Field—Google Књиге. Available online: https://books.google.rs/books?hl=sr&lr=&id=83L2EAAAQBAJ&oi=fnd&pg=PT8&dq=Field,+A.+(2009),+Discovering+Statistics+Using+SPSS,+3rd+ed.,+SAGE+Publications,+London.&ots=UbLZFsFMHP&sig=yG_djoMqCzmDrP1YsBcC6ifaRgk&redir_esc=y#v=onepage&q=Field%2C A. (2009)%2C Discovering Statistics Using SPSS%2C 3rd ed.%2C SAGE Publications%2C London.&f=false (accessed on 17 February 2025).
- Curtis, F. Eco-localism and sustainability. Ecol. Econ. 2003, 46, 83–102. [Google Scholar] [CrossRef]
- Calkins, M. A Complete Guide to the Evaluation, Selection, and Use of Sustainable Construction Materials. 2008, p. 464. Available online: https://books.google.com/books/about/Materials_for_Sustainable_Sites.html?hl=sr&id=FVqXqhvUhe0C (accessed on 17 February 2025).
- Costa, C.; Cerqueira, Â.; Rocha, F.; Velosa, A. The sustainability of adobe construction: Past to future. Int. J. Archit. Herit. 2019, 13, 639–647. [Google Scholar] [CrossRef]
- Godwin, P.J. Building Conservation and Sustainability in the United Kingdom. Procedia Eng. 2011, 20, 12–21. [Google Scholar] [CrossRef]
- Philokyprou, M.; Michael, A. Environmental Sustainability in the Conservation of Vernacular Architecture. The Case of Rural and Urban Traditional Settlements in Cyprus. Int. J. Archit. Herit. 2021, 15, 1741–1763. [Google Scholar] [CrossRef]
- Roadmap Towards the Circular Economy in Montenegro|United Nations Development Programme. Available online: https://www.undp.org/montenegro/publications/roadmap-towards-circular-economy-montenegro (accessed on 27 March 2025).
- Roadmap for Circular Economy in Serbia|United Nations Development Programme. Available online: https://www.undp.org/serbia/publications/roadmap-circular-economy-serbia (accessed on 27 March 2025).
- Steemers, K. Towards a research agenda for adapting to climate change. Build. Res. Inf. 2003, 31, 291–301. [Google Scholar] [CrossRef]
- Ratti, C.; Baker, N.; Steemers, K. Energy consumption and urban texture. Energy Build. 2005, 37, 762–776. [Google Scholar] [CrossRef]
CCEIs | Belgrade | Podgorica | |||
---|---|---|---|---|---|
Environmental Indicators | Green Infrastructure | Horizontal and vertical greenery Urban green areas | Yes | A more intensive application is necessary for both cities for all indicators | Yes |
Microclimate regulation | Temperature regulation Humidity control Different urban climate zones | Partially | Partially | ||
Material Circularity in Green structures | Reuse Recycling Adaptive reuse Landscaping | No | No | ||
Energy Efficiency through Bioclimatic design | Application of trees and green facades to reduce cooling or heating | Yes | Yes | ||
Urban Density and Green Spaces | Urban greenery and its accees | No | No | ||
Climate responsive Landscaping | Selection of plants based on climate conditions | Yes | Yes | ||
Water management | Water recycling Use of green spaces | No | No |
Item | Factor Loadings | Descriptive Statistics | |
---|---|---|---|
Mean | Std. Deviation | ||
1. How often do you consider local climate conditions in the early stages of design? | 0.66 | 1.93 | 1.08 |
2. Are you familiar with the term “passive greening strategies” in building design and construction? | 0.68 | 2.36 | 1.19 |
3. Do you use local materials that are adapted to the climate of your region? | 0.70 | 2.05 | 1.05 |
4. Do budget constraints affect the implementation of these climate-adapted strategies? | 0.70 | 2.20 | 1.00 |
5. Are there specific challenges related to laws and regulations in your city that impact climate-adapted design? | 0.55 | 2.59 | 1.11 |
Eigenvalue | 2.17 | ||
% of variance | 43.39 | ||
Cronbach’s Alpha | 0.67 |
Item | Factor Loadings | Descriptive Statistics | |
---|---|---|---|
Mean | Std. Deviation | ||
1. How familiar are you with the concept of circular cities? | 0.56 | 2.79 | 1.42 |
2. Do you think that the climate of your city influences the choice of materials? | 0.65 | 1.99 | 1.10 |
3. Are there any local policies or incentives that encourage circular economy practices? | 0.70 | 2.93 | 1.15 |
4. Do you face challenges in reducing construction waste during design and construction? | 0.75 | 2.64 | 1.16 |
5. Do you ensure the potential for material reuse in your projects in any way? | 0.71 | 2.85 | 1.17 |
Eigenvalue | 2.31 | ||
% of variance | 46.16 | ||
Cronbach’s Alpha | 0.70 |
Item | Factor Loadings | Descriptive Statistics | |
---|---|---|---|
Mean | Std. Deviation | ||
1. How often do you consider passive strategies (e.g., solar shading) when selecting local materials for your projects? | 0.66 | 2.44 | 1.00 |
2. How often do you use locally developed technologies in your projects to enhance the building’s performance? | 0.76 | 2.59 | 1.20 |
3. How often do you collaborate with local manufacturers or suppliers to integrate passive strategies through climate-adapted materials? | 0.74 | 2.71 | 1.13 |
4. To what extent does the use of local materials and technologies support your commitment to passive design principles? | 0.80 | 2.58 | 1.03 |
5. To what extent does the use of local materials and technologies support your commitment to environmental preservation principles? | 0.83 | 2.57 | 1.05 |
Eigenvalue | 2.89 | ||
% of variance | 57.70 | ||
Cronbach’s Alpha | 0.81 |
Factors | Country | Descriptive Statistics | Kolmogorov–Smirnov | Shapiro–Wilk | ||||
---|---|---|---|---|---|---|---|---|
N | Mean | Std. Deviation | Statistic | Sig. | Statistic | Sig. | ||
Degree of integration of greening strategies | Montenegro | 93 | −0.14 | 0.86 | 0.09 | 0.05 | 0.94 | 0.00 |
Serbia | 44 | 0.27 | 1.21 | 0.13 | 0.08 | 0.93 | 0.01 | |
Total | 137 | 0.00 | 1.00 | 0.10 | 0.00 | 0.92 | 0.00 | |
Degree of application of circular economy principles in projects | Montenegro | 94 | −0.10 | 0.91 | 0.06 | 0.20 | 0.99 | 0.53 |
Serbia | 45 | 0.21 | 1.17 | 0.08 | 0.20 | 0.97 | 0.44 | |
Total | 139 | 0.00 | 1.00 | 0.07 | 0.20 | 0.99 | 0.18 | |
Degree of impact of the availability of local materials and technologies on adopting green building practices specific to different climate zones | Montenegro | 94 | −0.17 | 0.89 | 0.09 | 0.09 | 0.98 | 0.13 |
Serbia | 44 | 0.35 | 1.13 | 0.12 | 0.17 | 0.93 | 0.01 | |
Total | 138 | 0.00 | 1.00 | 0.08 | 0.04 | 0.97 | 0.01 |
Factors | Levene’s Test for Equality of Variances | t-Test for Equality of Means | |||
---|---|---|---|---|---|
F | Sig. | t | Sig. (2-Tailed) | ||
Degree of integration of greening strategies | Equal variances not assumed | 6.97 | 0.01 | −2.01 | 0.05 |
Degree of application of circular economy principles in projects | Equal variances assumed | 3.33 | 0.07 | −1.72 | 0.09 |
Degree of impact of the availability of local materials and technologies on adopting green building practices specific to different climate zones | Equal variances not assumed | 4.17 | 0.04 | −2.70 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miletić, M.; Komatina, D.; Mosurović Ružičić, M. Climate Responsive Green Building Strategies in Circular Cities: A Comparative Study for Two Regions. Sustainability 2025, 17, 3469. https://doi.org/10.3390/su17083469
Miletić M, Komatina D, Mosurović Ružičić M. Climate Responsive Green Building Strategies in Circular Cities: A Comparative Study for Two Regions. Sustainability. 2025; 17(8):3469. https://doi.org/10.3390/su17083469
Chicago/Turabian StyleMiletić, Mirjana, Dragan Komatina, and Marija Mosurović Ružičić. 2025. "Climate Responsive Green Building Strategies in Circular Cities: A Comparative Study for Two Regions" Sustainability 17, no. 8: 3469. https://doi.org/10.3390/su17083469
APA StyleMiletić, M., Komatina, D., & Mosurović Ružičić, M. (2025). Climate Responsive Green Building Strategies in Circular Cities: A Comparative Study for Two Regions. Sustainability, 17(8), 3469. https://doi.org/10.3390/su17083469