Abstract
Green buildings increasingly couple electrical, thermal, and hydrogen subsystems, yet these assets are typically monitored and controlled through separate standards and protocols. The resulting heterogeneous information models and communication stacks hinder millisecond-level coordination, plug-and-play integration, and resilient operation. To address this gap, we develop a unified information model and a cross-protocol real-time interaction mechanism based on extensions of IEC 61850. At the modeling level, we introduce new logical nodes and standardized data objects that describe electrical, thermal, and hydrogen devices in a single semantic space, supported by a global unit system and knowledge-graph-based semantic checking. At the communication level, we introduce a semantic gateway with adaptive mapping bridges IEC 61850 and legacy building protocols, while fast event messaging and 5G-enabled edge computing support deterministic low-latency control. The approach is validated on a digital-twin platform that couples an RTDS-based multi-energy system with a 5G test network. Experiments show device plug-and-play within 0.8 s, cross-protocol response-time differences below 50 ms, GOOSE latency under 5 ms, and critical-data success rates above 90% at a bit-error rate of 10−3. Under grid-fault scenarios, the proposed framework reduces voltage recovery time by about 60% and frequency deviation by about 70%, leading to more than 80% improvement in a composite resilience index compared with a conventional non-unified architecture. These results indicate that the framework provides a practical basis for interoperable, low-carbon, and resilient energy management in green buildings.