Essential Oils as Sustainable Alternatives for Managing Plant-Parasitic Nematodes: A Comprehensive Review
Abstract
1. Introduction
2. Essential Oils: Composition, Biological Activity, and Stability
3. Nematicidal Mechanisms of Essential Oils
4. Effects of Essential Oils on Different Plant-Parasitic Nematode Species
4.1. Root-Knot Nematodes (Meloidogyne spp.)
4.2. Cyst and Lesion Nematodes (Globodera spp. and Pratylenchus spp.)
4.3. Other Nematode Genera
5. Formulation and Delivery Strategies of Essential Oils
6. Challenges and Limitations
6.1. Commercial and Technical Limitations
6.2. Biological and Experimental Challenges
6.3. Chemical Interactions and Standardization Issues
6.4. Regulatory and Policy Barriers
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| EOs | Essential oils |
| PPNs | Plant-parasitic nematodes |
| RKNs | Root-knot nematodes |
| J2 | Second-stage juvenile |
| LC50 | Lethal concentration 50 |
| AITC | Allyl isothiocyanate |
| DADS | Diallyl disulfide |
| DATS | Diallyl trisulfide |
References
- Lorenzen, S. The Phylogenetic Systematics of Freeliving Nematodes; Platt, H.M., Ed.; Ray Society: London, UK, 1994. [Google Scholar]
- Bardgett, R.D.; Van Der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef]
- Ferris, H.; Venette, R.; Scow, K. Soil management to enhance bacterivore and fungivore nematode populations and their nitrogen mineralisation. Appl. Soil Ecol. 2004, 25, 19–35. [Google Scholar] [CrossRef]
- Ferris, H. Contribution of nematodes to the structure and function of the soil food web. J. Nematol. 2010, 42, 63–67. [Google Scholar] [PubMed]
- Quist, C.W.; Smant, G.; Helder, J. Evolution of plant parasitism in the phylum Nematoda. Annu. Rev. Phytopathol. 2015, 53, 289–310. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fan, H.; Zhao, D.; Zhu, X.; Wang, Y.; Liu, X.; Liu, D.; Duan, Y.; Chen, L. Multifunctional efficacy of the nodule endophyte Pseudomonas fragi in stimulating tomato immune response against Meloidogyne incognita. Biol. Control 2021, 164, 104773. [Google Scholar] [CrossRef]
- Ayaz, M.; Ali, Q.; Farzand, A.; Khan, A.R.; Ling, H.; Gao, X. Nematicidal volatiles from Bacillus atrophaeus GBSC56 promote growth and stimulate induced systemic resistance in tomato against Meloidogyne incognita. Int. J. Mol. Sci. 2021, 22, 5049. [Google Scholar] [CrossRef]
- Ning, J.; Zhou, J.; Wang, H.; Liu, Y.; Ahmad, F.; Feng, X.; Fu, Y.; Gu, X.; Zhao, L. Parallel evolution of C-type lectin domain gene family sizes in insect-vectored nematodes. Front. Plant Sci. 2022, 13, 856826. [Google Scholar] [CrossRef]
- Sorribas, F.J.; Djian-Caporalino, C.; Mateille, T. Nematodes. In Integrated Pest and Disease Management in Greenhouse Crops; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 147–174. [Google Scholar]
- Migunova, V.D.; Sasanelli, N. Bacteria as biocontrol tool against phytoparasitic nematodes. Plants 2021, 10, 389. [Google Scholar] [CrossRef]
- Oka, Y. From old-generation to next-generation nematicides. Agronomy 2020, 10, 1387. [Google Scholar] [CrossRef]
- Catani, L.; Manachini, B.; Grassi, E.; Guidi, L.; Semprucci, F. Essential oils as nematicides in plant protection—A review. Plants 2023, 12, 1418. [Google Scholar] [CrossRef]
- Lopes, E.A.; Dallemole-Giaretta, R.; dos Santos Neves, W.; Parreira, D.F.; Ferreira, P.A. Eco-friendly approaches to the management of plant-parasitic nematodes. In Plant Health Under Biotic Stress: Volume 1: Organic Strategies; Springer: Singapore, 2019; pp. 167–186. [Google Scholar]
- Pereira, G.; Barbosa, P.; Vicente, C.S.; Faria, J.M. Eco-Friendly Management of Root Lesion Nematodes Using Volatile Allelochemicals. Agronomy 2025, 15, 1605. [Google Scholar] [CrossRef]
- Campos, V.P.; Pinho, R.S.C.; Freire, E.S. Volatiles produced by interacting microorganisms potentially useful for the control of plant pathogens. Cienc. Agrotec. 2010, 34, 525–535. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Lu, H.; Wang, X.; Zhang, K.Q.; Li, G.H. Effect of volatile organic compounds from bacteria on nematodes. Chem. Biodivers. 2015, 12, 1415–1421. [Google Scholar] [CrossRef]
- Sarri, K.; Mourouzidou, S.; Ntalli, N.; Monokrousos, N. Recent advances and developments in the nematicidal activity of essential oils and their components against root-knot nematodes. Agronomy 2024, 14, 213. [Google Scholar] [CrossRef]
- Kalaiselvi, D.; Mohankumar, A.; Shanmugam, G.; Thiruppathi, G.; Nivitha, S.; Sundararaj, P. Altitude-related changes in the phytochemical profile of essential oils extracted from Artemisia nilagirica and their nematicidal activity against Meloidogyne incognita. Ind. Crops Prod. 2019, 139, 111472. [Google Scholar] [CrossRef]
- Goyal, L.; Kaushal, S.; Dhillon, N.K.; Heena. Nematicidal potential of Citrus reticulata peel essential oil, isolated major compound and its derivatives against Meloidogyne incognita. Arch. Phytopathol. Plant Prot. 2021, 54, 449–467. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Lange, B.M. The evolution of plant secretory structures and emergence of terpenoid chemical diversity. Annu. Rev. Plant Biol. 2015, 66, 139–159. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D. The Chemistry of Essential Oils Made Simple: God’s Love Manifest in Molecules; Care Publications: Marble Hill, MO, USA, 2005. [Google Scholar]
- Basile, A.; Jiménez-Carmona, M.M.; Clifford, A.A. Extraction of rosemary by superheated water. J. Agric. Food Chem. 1998, 46, 5205–5209. [Google Scholar] [CrossRef]
- Kim, N.S.; Lee, D.S. Comparison of different extraction methods for the analysis of fragrances from Lavandula species by gas chromatography–mass spectrometry. J. Chromatogr. A 2002, 982, 31–47. [Google Scholar] [CrossRef]
- Sikkema, J.A.N.; de Bont, J.A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995, 59, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Başer, K.H.C.; Demirci, F. Chemistry of essential oils. In Flavours and Fragrances; Springer: Berlin/Heidelberg, Germany, 2007; Volume 12. [Google Scholar]
- D’Addabbo, T.; Avato, P. Chemical composition and nematicidal properties of sixteen essential oils—A review. Plants 2021, 10, 1368. [Google Scholar] [CrossRef] [PubMed]
- Mugao, L. Factors influencing yield, chemical composition and efficacy of essential oils. Int. J. Multidiscip. Res. Growth Eval. 2024, 5, 169–178. [Google Scholar] [CrossRef]
- Angioni, A.; Barra, A.; Coroneo, V.; Dessi, S.; Cabras, P. Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. J. Agric. Food Chem. 2006, 54, 4364–4370. [Google Scholar]
- Badi, H.N.; Yazdani, D.; Ali, S.M.; Nazari, F. Effects of spacing and harvesting time on herbage yield and quality/quantity of oil in thyme, Thymus vulgaris L. Ind. Crops Prod. 2004, 19, 231–236. [Google Scholar] [CrossRef]
- Hassiotis, C.N.; Vlachonasios, K.E. How biological and environmental factors affect the quality of lavender essential oils. Physiologia 2025, 5, 11. [Google Scholar] [CrossRef]
- Hosseinabadi, S.; Yavari, A.; Abdollahi, F. Essential oil variation in Melissa officinalis L. cultivated under industrial field conditions: Effects of different harvesting times and plant materials. J. Essent. Oil Bear. Plants 2024, 27, 285–299. [Google Scholar] [CrossRef]
- Franz, C.; Novak, J. Sources of essential oils. In Handbook of Essential Oils: Science, Technology, and Applications, 1st ed.; Baser, K.H.C., Buckbauer, G., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 39–81. [Google Scholar]
- Hudaib, M.; Speroni, E.; Di Pietra, A.M.; Cavrini, V. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variation during the vegetative cycle. J. Pharm. Biomed. Anal. 2002, 29, 691–700. [Google Scholar] [CrossRef]
- Pagoula, F.; Baser, K.H.; Kurkcuoglu, M. Essential oil composition of Eucalyptus camaldulensis Dehnh from Mozambique. J. Essent. Oil Res. 2000, 12, 333–335. [Google Scholar] [CrossRef]
- Tiwari, A.; Goswami, P.; Bisht, B.S.; Chauhan, A.; Verma, R.S.; Padalia, R.C. Essential oil composition of African marigold (Tagetes minuta L.) harvested at different growth stages in foothill agroclimatic conditions of North India. Am. J. Essent. Oils Nat. Prod. 2016, 4, 4–7. [Google Scholar]
- Perry, N.B.; Andreson, R.E.; Brennan, N.J.; Douglas, M.H.; Heaney, A.J.; McGimpsey, J.A.; Smallfield, B.M. Essential oils from Dalmatian sage (Salvia officinalis L.): Variations among individuals, plant parts, season and sites. J. Agric. Food Chem. 1999, 47, 2048–2054. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, S.; Rastogi, N.; Srivastava, M. Exploring the medicinal potential of Lantana camara: A comprehensive review of phytochemicals and therapeutic application. Phytochem. Rev. 2025, 1, 1–31. [Google Scholar] [CrossRef]
- Echeverrigaray, S.; Agostini, G.; Atti-Serfini, L.; Paroul, G.; Pauletti, G.F.; Atti dos Santos, A.C. Correlation between the chemical and genetic relationships among commercial thyme cultivars. J. Agric. Food Chem. 2001, 49, 4220–4223. [Google Scholar] [CrossRef] [PubMed]
- Bhat, G.; Rasool, S.; Shakeel-u-Rehman; Ganaie, M.; Qazi, P.H.; Shawl, A.S. Seasonal variation in chemical composition, antibacterial and antioxidant activities of the essential oil of leaves of Salvia officinalis (sage) from Kashmir, India. J. Essent. Oil Bear. Plants 2016, 19, 1129–1140. [Google Scholar] [CrossRef]
- Rostaei, M.; Fallah, S.; Carrubba, A.; Lorigooini, Z. Organic manures enhance biomass and improve content, chemical compounds of essential oil and antioxidant capacity of medicinal plants: A review. Heliyon 2024, 10, e36693. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, R.A. Plant terpenes: Defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech 2015, 5, 129–151. [Google Scholar] [CrossRef]
- Machado, D.G.; Cunha, M.P.; Neis, V.B.; Balen, G.O.; Colla, A.; Bettio, L.E.; Oliveira, A.; Pazini, F.E.; Dalmarco, J.B.; Simionatto, E.L.; et al. Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chem. 2013, 136, 999–1005. [Google Scholar] [CrossRef]
- Azizi, A.; Yan, F.; Honermeier, B. Herbage yield, essential oil content and composition of three oregano (Origanum vulgare L.) populations as affected by soil moisture regimes and nitrogen supply. Ind. Crops Prod. 2009, 29, 554–561. [Google Scholar] [CrossRef]
- Baher, Z.F.; Mirza, M.; Ghorbanli, M.; Bagher Rezaii, M. The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour Fragr. J. 2002, 17, 275–277. [Google Scholar]
- Yadav, R.K.; Sangwan, R.S.; Sabir, F.; Srivastava, A.K.; Sangwan, N.S. Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L. Plant Physiol. Biochem. 2014, 74, 70–83. [Google Scholar] [CrossRef] [PubMed]
- De Feo, V.; Bruno, M.; Tahiri, B.; Napolitano, F.; Senatore, F. Chemical composition and antibacterial activity of essential oils from Thymus spinulosus Ten. (Lamiaceae). J. Agric. Food Chem. 2003, 51, 3849–3853. [Google Scholar] [CrossRef] [PubMed]
- Nell, M.; Vötsch, M.; Vierheilig, H.; Steinkellner, S.; Zitterl-Eglseer, K.; Franz, C.; Novak, J. Effects of soil composition on Salvia officinalis essential oil. J. Sci. Food Agric. 2009, 89, 1090–1098. [Google Scholar] [CrossRef]
- Dordas, C. Foliar application of calcium and magnesium improves growth, yield, and essential oil yield of oregano (Origanum vulgare ssp. hirtum). Ind. Crops Prod. 2009, 29, 599–608. [Google Scholar] [CrossRef]
- Kurade, N.P.; Jaitak, V.; Kaul, V.K.; Sharma, O.P. Chemical composition and antibacterial activity of essential oils of Lantana camara, Ageratum houstonianum and Eupatorium adenophorum. Pharm. Biol. 2010, 48, 539–544. [Google Scholar] [CrossRef]
- Farhat, G.N.; Affara, N.L.; Gali-Muhtasib, H.U. Seasonal changes in the composition of the essential oil extract of East Mediterranean sage (Salvia libanotica) and its toxicity in mice. Toxicon 2001, 39, 1601–1605. [Google Scholar] [CrossRef]
- Das, S.; Prakash, B. Effect of environmental factors on essential oil biosynthesis, chemical stability, and yields. In Plant Essential Oils: From Traditional to Modern-Day Application; Springer Nature: Singapore, 2023; pp. 225–247. [Google Scholar]
- Xu, F.; Shi, Y.; Li, B.; Liu, C.; Zhang, Y.; Zhong, J. Characterization, stability and antioxidant activity of vanilla nano-emulsion and its complex essential oil. Foods 2024, 13, 801. [Google Scholar] [CrossRef]
- Misharina, T.A.; Polshkov, A.N. Antioxidant properties of essential oils: Autoxidation of essential oils from laurel and fennel and of their mixtures with essential oil from coriander. Appl. Biochem. Microbiol. 2005, 41, 610–618. [Google Scholar] [CrossRef]
- Castro, H.T.; Martínez, J.R.; Stashenko, E. Anethole isomerization and dimerization induced by acid sites or UV irradiation. Molecules 2010, 15, 5012–5030. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Impact of different storage conditions on the quality of selected essential oils. Food Res. Int. 2012, 46, 341–353. [Google Scholar] [CrossRef]
- Odak, I.; Lukic, T.; Talic, S. Impact of storage conditions on alteration of juniper and immortelle essential oils. J. Essent. Oil Bear. Plants 2018, 21, 614–622. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Chitwood, D.J. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol. 2002, 40, 221–249. [Google Scholar] [CrossRef]
- Rasoul, M. Evaluation of nematicidal effects of monoterpenes against root-knot nematode, Meloidogyne incognita. J. Plant Prot. Pathol. 2013, 4, 445–456. [Google Scholar] [CrossRef]
- Dutta, A.; Mandal, A.; Kundu, A.; Malik, M.; Chaudhary, A.; Khan, M.R.; Shanmugam, V.; Rao, U.; Saha, S.; Patanjali, N.; et al. Deciphering the behavioral response of Meloidogyne incognita and Fusarium oxysporum toward mustard essential oil. Front. Plant Sci. 2021, 12, 714730. [Google Scholar] [CrossRef]
- Galisteo, A.; González-Coloma, A.; Castillo, P.; Andrés, M.F. Valorization of the hydrolate byproduct from the industrial extraction of purple Allium sativum essential oil as a source of nematicidal products. Life 2022, 12, 905. [Google Scholar] [CrossRef]
- Takasugi, M.; Yachida, Y.; Anetai, M.; Masamune, T.; Kegasawa, K. Identification of asparagusic acid as a nematicide occurring naturally in the roots of asparagus. Chem. Lett. 1975, 4, 43–44. [Google Scholar] [CrossRef]
- Mitchell, S.C.; Waring, R.H. Asparagusic acid. Phytochemistry 2014, 97, 5–10. [Google Scholar] [CrossRef]
- Desmedt, W.; Mangelinckx, S.; Kyndt, T.; Vanholme, B. A phytochemical perspective on plant defense against nematodes. Front. Plant Sci. 2020, 11, 602079. [Google Scholar] [CrossRef]
- Jardim, I.N.; Oliveira, D.F.; Silva, G.H.; Campos, V.P.; De Souza, P.E. (E)-Cinnamaldehyde from the essential oil of Cinnamomum cassia controls Meloidogyne incognita in soybean plants. J. Pest Sci. 2018, 91, 479–487. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, S.; Mariama, K.; Elsen, A.; De Waele, D. Phenols and lignin are involved in the defence response of banana (Musa) plants to Radopholus similis infection. Nematology 2014, 16, 565–576. [Google Scholar] [CrossRef]
- Hölscher, D.; Dhakshinamoorthy, S.; Alexandrov, T.; Becker, M.; Bretschneider, T.; Buerkert, A.; Crecelius, A.C.; De Waele, D.; Elsen, A.; Heckel, D.G.; et al. Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis. Proc. Natl. Acad. Sci. USA 2014, 111, 105–110. [Google Scholar] [CrossRef]
- Ohri, P.; Kaur, S. Effect of phenolic compounds on nematodes: A review. J. Appl. Nat. Sci. 2010, 2, 344–350. [Google Scholar] [CrossRef]
- Gowda, A.P.; Shakil, N.A.; Rana, V.S.; Singh, A.K.; Bhatt, K.C.; Devaraja, K.P. Chemical composition and nematicidal activity of essential oil and piperitone oxide of Mentha longifolia L. against Meloidogyne incognita. Allelopath. J. 2023, 58, 165–181. [Google Scholar] [CrossRef]
- Felek, A.F.; Ozcan, M.M.; Akyazi, F. Effects of essential oils distilled from some medicinal and aromatic plants against root knot nematode (Meloidogyne hapla). J. Appl. Sci. Environ. Manag. 2019, 23, 1425. [Google Scholar] [CrossRef]
- Ntalli, N.; Bratidou Parlapani, A.; Tzani, K.; Samara, M.; Boutsis, G.; Dimou, M.; Menkissoglu-Spiroudi, U.; Monokrousos, N. Thymus citriodorus (Schreb) botanical products as ecofriendly nematicides with bio-fertilizing properties. Plants 2020, 9, 202. [Google Scholar] [CrossRef] [PubMed]
- Kabdal, T.; Kumar, R.; Prakash, O.; Nagarkoti, K.; Rawat, D.S.; Srivastava, R.M.; Kumar, S.; Dubey, S.K. Seasonal variation in the essential oil composition and biological activities of Thymus linearis Benth. collected from the Kumaun region of Uttarakhand, India. Biochem. Syst. Ecol. 2022, 103, 104449. [Google Scholar] [CrossRef]
- Ajith, M.; Shakil, N.A.; Kaushik, P.; Rana, V.S. Chemical composition and nematicidal activity of essential oils and their major compounds against Meloidogyne graminicola (rice root-knot nematode). J. Essent. Oil Res. 2020, 32, 526–535. [Google Scholar] [CrossRef]
- Kundu, A.; Dutta, A.; Mandal, A.; Negi, L.; Malik, M.; Puramchatwad, R.; Antil, J.; Singh, A.; Rao, U.; Saha, S.; et al. A comprehensive in vitro and in silico analysis of nematicidal action of essential oils. Front. Plant Sci. 2021, 11, 614143. [Google Scholar] [CrossRef] [PubMed]
- Eloh, K.; Kpegba, K.; Sasanelli, N.; Koumaglo, H.K.; Caboni, P. Nematicidal activity of some essential plant oils from tropical West Africa. Int. J. Pest Manag. 2020, 66, 131–141. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Laquale, S.; Veronico, P.; Avato, P.; Argentieri, M.P. Nematicidal activity of the essential oil from Cinnamomum cassia and (E)-cinnamaldehyde against phytoparasitic nematodes. J. Pest Sci. 2025, 98, 521–533. [Google Scholar] [CrossRef]
- Basaid, K.; Chebli, B.; Bouharroud, R.; Elaini, R.; Alaoui, I.F.; Kaoui, S.; De Oliveira, A.L.; Furze, J.N.; Mayad, E.H. Biocontrol potential of essential oil from Moroccan Ridolfia segetum (L.) Moris. J. Plant Dis. Prot. 2021, 128, 1157–1166. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Laquale, S.; Argentieri, M.P.; Bellardi, M.G.; Avato, P. Nematicidal activity of essential oil from lavandin (Lavandula × intermedia Emeric ex Loisel.) as related to chemical profile. Molecules 2021, 26, 6448. [Google Scholar] [CrossRef]
- Laquale, S.; Avato, P.; Argentieri, M.P.; Bellardi, M.G.; D’Addabbo, T. Nematotoxic activity of essential oils from Monarda species. J. Pest Sci. 2018, 91, 1115–1125. [Google Scholar] [CrossRef]
- Keerthiraj, M.; Mandal, A.; Dutta, T.K.; Saha, S.; Dutta, A.; Singh, A.; Kundu, A. Nematicidal and molecular docking investigation of essential oils from Pogostemon cablin ecotypes against Meloidogyne incognita. Chem. Biodivers. 2021, 18, e2100320. [Google Scholar] [CrossRef]
- Ardakani, A.S.; Hosseininejad, S.A. Identification of chemical components from essential oils and aqueous extracts of some medicinal plants and their nematicidal effects on Meloidogyne incognita. J. Basic Appl. Zool. 2022, 83, 14. [Google Scholar] [CrossRef]
- Moreira, F.J.C.; de Abreu Araújo, B.; do Nascimento Lopes, F.G.; de Assis Lopes de Sousa, A.; Evami Cavalcante Sousa, A.; da Silva Andrade, L.B.; Ferreira Uchoa, A. Assessment of the Tephrosia toxicaria essential oil on hatching and mortality of eggs and second-stage juvenile (J2) root-knot nematode (Meloidogyne enterolobii and M. javanica). Aust. J. Crop Sci. 2018, 12, 1829–1836. [Google Scholar] [CrossRef]
- Hammad, E.A.; El-Sagheer, A.M. Comparative efficacy of essential oil nanoemulsions and bioproducts as alternative strategies against root-knot nematode, and its impact on the growth and yield of Capsicum annuum L. J. Saudi Soc. Agric. Sci. 2023, 22, 47–53. [Google Scholar] [CrossRef]
- Mamoci, E.; Andrés, M.F.; Olmeda, S.; González-Coloma, A. Chemical composition and activity of essential oils of Albanian coniferous plants on plant pests. Chem. Proc. 2022, 10, 15. [Google Scholar] [CrossRef]
- Arya, S.; Kumar, R.; Prakash, O.; Kumar, S.; Mahawer, S.K.; Chamoli, S.; Kumar, P.; Srivastava, R.M.; De Oliveira, M.S. Chemical composition and biological activities of Hedychium coccineum Buch.-Ham. ex Sm. essential oils from Kumaun Hills of Uttarakhand. Molecules 2022, 27, 4833. [Google Scholar] [CrossRef]
- Kamçılar, F.G.; Altinkoy, D.S. Pratylenchus thornei Sher et Allen (Tylenchida: Pratylenchidae)’a karşı Myristica fragrans Houtt (Magnoliales: Myristicaceae) bitki ekstraktının nematisidal etkinliğinin laboratuvar koşullarında belirlenmesi. Tekirdağ Ziraat Fak. Derg. 2024, 21, 1161–1169. [Google Scholar]
- Kumar, R.; Dutta, T.K.; Mandal, A.; Saha, S.; Dutta, A.; Kundu, A. Nanoemulsions of essential oil of Zanthoxylum alatum for protection against Meloidogyne incognita. J. Taibah Univ. Sci. 2025, 19, 2464461. [Google Scholar] [CrossRef]
- Barros, A.F.; Campos, V.P.; de Oliveira, D.F.; de Jesus Silva, F.; Jardim, I.N.; Costa, V.A.; Silva, G.H. Activities of essential oils from three Brazilian plants and benzaldehyde analogues against Meloidogyne incognita. Nematology 2019, 21, 1081–1089. [Google Scholar] [CrossRef]
- Hammad, E.A.; Hasanin, M.M.H. Antagonistic effect of nanoemulsions of some essential oils against Fusarium oxysporum and root-knot nematode Meloidogyne javanica on Coleus plants. Pak. J. Nematol. 2022, 40, 35–48. [Google Scholar] [CrossRef]
- Tamoor, K.; Maryam, H. Evaluation of Some Medicinal Plants for the Management of Root-Knot Diseases of Banana. Pak. J. Nematol. 2021, 39, 1. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.; Omer, E.A. Effect of essential oils of some medicinal plants on phytonematodes. Anz. Schädlingskd. Pflanzenschutz Umweltschutz 1995, 68, 82–84. [Google Scholar] [CrossRef]
- Mattei, D.; Dias-Arieira, C.R.; Puerari, H.H.; Dadazio, T.S.; Roldi, M.; Silva, T.R.B. Evaluation of Rosmarinus officinalis essential oil in inducing resistance to Meloidogyne javanica and Pratylenchus brachyurus in soybean. Food Agric. Environ. 2013, 11, 1171–1175. [Google Scholar]
- Krif, G.; El Aissami, A.; Zoubi, B.; Dababat, A.A.; Khfif, K.; Lahlali, R.; Mokrini, F. Evaluation of the nematicidal effect of some essential oils on Meloidogyne javanica under in vitro and in vivo conditions. J. Crop Health 2024, 76, 1519–1528. [Google Scholar] [CrossRef]
- Barros, A.; Campos, V.P.; Lopes De Paula, L.; Pedroso, L.A.; Silva, F.J.; Da Silva, J.C.P.; De Oliveira, D.F.; Silva, G.H. The role of Cinnamomum zeylanicum essential oil, (E)-cinnamaldehyde and (E)-cinnamaldehyde oxime in the control of Meloidogyne incognita. J. Phytopathol. 2021, 169, 229–238. [Google Scholar] [CrossRef]
- Ferreira, R.; Maleita, C.; Fonseca, L.; Esteves, I.; Sousa-Ferreira, I.; Cabrera, R.; Castilho, P. Chemical screening and nematicidal activity of essential oils from Macaronesian and Mediterranean plants for controlling plant-parasitic nematodes. Plants 2025, 14, 337. [Google Scholar] [CrossRef] [PubMed]
- Borges, D.F.; Lopes, E.A.; Côrtes, F.R.; Visôtto, L.E.; Valente, V.M.M.; Souza, M.F. Nematicidal potential of essential oils of Ageratum fastigiatum, Callistemon viminalis and Schinus terebinthifolius. Biosci. J. 2018, 34, 90–96. [Google Scholar] [CrossRef]
- Pardavella, I.; Daferera, D.; Tselios, T.; Skiada, P.; Giannakou, I. The use of essential oil and hydrosol extracted from Cuminum cyminum seeds for the control of Meloidogyne incognita and Meloidogyne javanica. Plants 2020, 10, 46. [Google Scholar] [CrossRef]
- Kaur, A.; Chahal, K.K.; Kataria, D.; Urvashi, K.A. Assessment of carrot seed essential oil and its chemical constituents against Meloidogyne incognita. J. Pharmacogn. Phytochem. 2018, 7, 896–903. [Google Scholar]
- Faria, J.M.; Vicente, C. Essential oils and volatiles as nematodicides against the cyst nematodes Globodera and Heterodera. Biol. Life Sci. Forum 2021, 3, 1. [Google Scholar] [CrossRef]
- Zoubi, B.; Mokrini, F.; Amer, M.; Cherki, G.; Rafya, M.; Benkebboura, A.; Akachoud, O.; Laasli, S.-E.; Housseinia, A.-I.; Qaddoury, A.; et al. Eco-friendly management of the citrus nematode Tylenchulus semipenetrans using some aromatic and medicinal plants. Arch. Phytopathol. Plant Prot. 2023, 56, 66–86. [Google Scholar] [CrossRef]
- Sosa, A.L.; Girardi, N.S.; Rosso, L.C.; Salusso, F.; Etcheverry, M.G.; Passone, M.A. In vitro compatibility of Pimpinella anisum and Origanum vulgare essential oils with nematophagous fungi and their effects against Nacobbus aberrans. J. Pest Sci. 2020, 93, 1381–1395. [Google Scholar] [CrossRef]
- Park, I.K.; Park, J.Y.; Kim, K.H.; Choi, K.S.; Choi, I.H.; Kim, C.S.; Shin, S.C. Nematicidal activity of plant essential oils and components from garlic (Allium sativum) and cinnamon (Cinnamomum verum) oils against the pine wood nematode (Bursaphelenchus xylophilus). Nematology 2005, 7, 767–774. [Google Scholar] [CrossRef]
- Raveau, R.; Fontaine, J.; Sahraoui, L.H. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods 2020, 9, 365. [Google Scholar] [CrossRef]
- Assadpour, E.; Can Karaça, A.; Fasamanesh, M.; Mahdavi, S.A.; Shariat-Alavi, M.; Feng, J.; Jafari, S.M. Application of essential oils as natural biopesticides; recent advances. Crit. Rev. Food Sci. Nutr. 2024, 64, 6477–6497. [Google Scholar] [CrossRef]
- Alipour, M.; Saharkhiz, M.J.; Niakousari, M.; Damyeh, M.S. Phytotoxicity of encapsulated essential oil of rosemary on germination and morphophysiological features of amaranth and radish seedlings. Sci. Hortic. 2019, 243, 131–139. [Google Scholar] [CrossRef]
- Pascual-Villalobos, M.J.; Guirao, P.; Díaz-Baños, F.G.; Cantó-Tejero, M.; Villora, G. Oil in water nanoemulsion formulations of botanical active substances. In Nano-Biopesticides Today and Future Perspectives; Rai, M.K., Singh, S.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 223–247. [Google Scholar]
- Libs, E.; Salim, E. Formulation of essential oil pesticides technology and their application. Agric. Res. Technol. 2017, 9, 555759. [Google Scholar]
- Kfoury, M. Préparation, Caractérisation Physicochimique et Évaluation des Propriétés Biologiques de Complexes D’inclusion à Base de Cyclodextrines: Applications à des Principes Actifs de Type Phénylpropanoïdes. Ph.D. Dissertation, Université du Littoral Côte d’Opale, Calais, France, 2015. [Google Scholar]
- Pavoni, L.; Pavela, R.; Cespi, M.; Bonacucina, G.; Maggi, F.; Zeni, V.; Canale, A.; Lucchi, A.; Bruschi, F.; Benelli, G. Green micro- and nanoemulsions for managing parasites, vectors and pests. Nanomaterials 2019, 9, 1285. [Google Scholar] [CrossRef] [PubMed]
- Donsì, F.; Ferrari, G. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol. 2016, 233, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and their potential applications in food industry. Front. Sustain. Food Syst. 2019, 3, 95. [Google Scholar] [CrossRef]
- Yousef, N.; Niloufar, M.; Elena, P. Antipathogenic effects of emulsion and nanoemulsion of cinnamon essential oil against Rhizopus rot and grey mold on strawberry fruits. Foods Raw Mater. 2019, 7, 210–216. [Google Scholar]
- Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B.; Carbone, C. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics 2021, 13, 327. [Google Scholar] [CrossRef]
- de Oca-Ávalos, J.M.M.; Candal, R.J.; Herrera, M.L. Nanoemulsions: Stability and physical properties. Curr. Opin. Food Sci. 2017, 16, 1–6. [Google Scholar] [CrossRef]
- Barradas, T.N.; de Holanda e Silva, K.G. Nanoemulsions of essential oils to improve solubility, stability and permeability: A review. Environ. Chem. Lett. 2021, 19, 1153–1171. [Google Scholar] [CrossRef]
- Liang, D.; Feng, B.; Li, N.; Su, L.; Wang, Z.; Kong, F.; Bi, Y. Preparation, characterization, and biological activity of Cinnamomum cassia essential oil nano-emulsion. Ultrason. Sonochem. 2022, 86, 106009. [Google Scholar] [CrossRef]
- Xing, Z.; Xu, Y.; Feng, X.; Gao, C.; Wu, D.; Cheng, W.; Meng, L.; Wang, Z.; Xu, T.; Tang, X. Fabrication of cinnamon essential oil nanoemulsions with high antibacterial activities via microfluidization. Food Chem. 2024, 456, 139969. [Google Scholar] [CrossRef] [PubMed]
- Ayllón-Gutiérrez, R.; Díaz-Rubio, L.; Montaño-Soto, M.; Haro-Vázquez, M.D.P.; Córdova-Guerrero, I. Applications of plant essential oils in pest control and their encapsulation for controlled release: A review. Agriculture 2024, 14, 1766. [Google Scholar] [CrossRef]
- Asbahani, A.E.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.H.A.; Casabianca, H.; Mousadik, A.E.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef] [PubMed]
- Tonon, R.V.; Grosso, C.R.; Hubinger, M.D. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Res. Int. 2011, 44, 282–289. [Google Scholar] [CrossRef]
- Altay, Ö.; Köprüalan, Ö.; İlter, I.; Koç, M.; Ertekin, F.K.; Jafari, S.M. Spray drying encapsulation of essential oils; process efficiency, formulation strategies, and applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 1139–1157. [Google Scholar] [CrossRef]
- Martins, M.; Henriques, M.; Azeredo, J.; Rocha, S.M.; Coimbra, M.A.; Oliveira, R. Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Eukaryot. Cell 2007, 6, 2429–2436. [Google Scholar] [CrossRef]
- Ocak, B.; Gülümser, G.; Baloğlu, E. Microencapsulation of Melaleuca alternifolia (tea tree) oil by using simple coacervation method. J. Essent. Oil Res. 2011, 23, 58–65. [Google Scholar] [CrossRef]
- Varona, S.; Kareth, S.; Martín, Á.; Cocero, M.J. Formulation of lavandin essential oil with biopolymers by PGSS for application as biocide in ecological agriculture. J. Supercrit. Fluids 2010, 54, 369–377. [Google Scholar] [CrossRef]
- Ciobanu, A.; Mallard, I.; Landy, D.; Brabie, G.; Nistor, D.; Fourmentin, S. Retention of aroma compounds from Mentha piperita essential oil by cyclodextrins and crosslinked cyclodextrin polymers. Food Chem. 2013, 138, 291–297. [Google Scholar] [CrossRef]
- Kusuma, R.; Manichandrika, P.; Yamini, M.; Venkata, K.; Varshitha, K.V.; Reddy, L.S.; Vaishnavi, T. Formulation and in vitro evaluation of Artemisia arborescens extract loaded solid lipid nanoparticles. J. Innov. Dev. Pharm. Technol. Sci. (JIDPTS) 2024, 7, 9. [Google Scholar]
- Isman, M.B.; Miresmailli, S.; Machial, C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 2011, 10, 197–204. [Google Scholar] [CrossRef]
- Maes, C.; Bouquillon, S.; Fauconnier, M.L. Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules 2019, 24, 2539. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.; Singh, M.; Chavan, A.; Wagh, N.S.; Lakkakula, J. Micro- and nanoencapsulation techniques in agriculture. In Agricultural Nanobiotechnology; Woodhead Publishing: Cambridge, UK, 2022; pp. 297–323. [Google Scholar]
- Werrie, P.Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.L. Phytotoxicity of essential oils: Opportunities and constraints for the development of biopesticides. A review. Foods 2020, 9, 1291. [Google Scholar] [CrossRef] [PubMed]
- Barua, A.; McDonald-Howard, K.L.; Mc Donnell, R.J.; Rae, R.; Williams, C.D. Toxicity of essential oils to slug parasitic and entomopathogenic nematodes. J. Pest Sci. 2020, 93, 1411–1419. [Google Scholar] [CrossRef]
- Greff, B.; Sáhó, A.; Lakatos, E.; Varga, L. Biocontrol activity of aromatic and medicinal plants and their bioactive components against soil-borne pathogens. Plants 2023, 12, 706. [Google Scholar] [CrossRef]
- Kotsinis, V.; Dritsoulas, A.; Ntinokas, D.; Giannakou, I.O. Nematicidal effects of four terpenes differ among entomopathogenic nematode species. Agriculture 2023, 13, 1143. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]


| Plant Genera | Plant Source | Major Components | Target Life Stage | Mode of Action 1 | Reference |
|---|---|---|---|---|---|
| Mentha spp. | Mentha longifolia | Piperitone oxide | J2, Eggs | JM, EHI | [73] |
| Mentha longifolia | I-menthone | Egg | EHI | [74] | |
| Mentha piperita | Carvone | J2 | JM | [74] | |
| Mentha spicata | Carvone, limonene | J2, Eggs | JM, GR | [74] | |
| Thymus spp. | Thymus citriodorus | Geraniol | J2, Eggs | JM, P | [75] |
| Thymus linearis Benth | Thymol | J2, Eggs | JM, EHI | [76] | |
| Cymbopogon spp. | Cymbopogon flexuosus | Citral | J2 | JM | [77] |
| Cymbopogon martinii | Geraniol | J2 | JM | [77] | |
| Cymbopogon nardus | Citronellal, geraniol | J2 | JM, P | [78] | |
| Cymbopogon schoenanthus | Piperitone | J2 | JM, P | [79] | |
| Artemisia spp. | Artemisia absinthium | Borneol acetate, β-terpineol | J2 | JM, P | [78] |
| Artemisia nilagirica | α-thujone, α-myrcene, linalyl isovalerate, camphor, caryophyllene oxide, eucalyptol | J2, Eggs | JM, EHI, GR | [18] | |
| Allium & Brassica | Allium sativum | DADS, DATS, methyl allyl trisulfide | Eggs, J2 | JM, EHI | [64] |
| Brassica nigra | Allyl isothiocyanate | J2 | JM, P | [63] | |
| Cinnamomum spp. | Cinnamomum cassia | (E)-cinnamaldehyde | Eggs, J2 | JM, P, GR | [68] |
| Cinnamomum cassia | Cinnamaldehyde | J2, Eggs | JM, EHI | [80] | |
| Other Genera | Acorus calamus | β-asarone | J2 | JM, P | [55] |
| Dysphania ambrosioides | (Z)-ascaridole, e-ascaridole, p-cymene | Eggs, J2 | JM, EHI, GR | [63] | |
| Schinus terebinthifolius | Terpinen-4-ol, γ-terpinene, α-terpineol | Eggs, J2 | JM, EHI | [65] | |
| Cuminum cyminum | γ-terpinen-7-al, α-terpinen-7-al, cuminaldehyde | J2, Eggs | JM, EHI, P, GR | [66] | |
| Daucus carota | Carotol, daucol, daucene | J2, Eggs | JM, EHI | [67] | |
| Ridolfia segetum | (Z)-β-ocimene, β-pinene | J2, Eggs | JM, P, EHI | [81] | |
| Foeniculum vulgare | Anethole | J2 | EHI | [74] | |
| Syzygium aromaticum | Eugenol | J2 | JM | [77] | |
| Commiphora myrrha | Furanoeudesm-1,3-diene, curcerene | J2 | JM, P | [78] | |
| Eucalyptus citriodora | Citronellal | J2 | JM, P | [78] | |
| Melaleuca alternifolia | β-terpineol, γ-terpinene | J2 | JM, P | [78] | |
| Myrtus communis | α-pinene, 1,8-cineol | J2 | JM, P | [78] | |
| Ocimum sanctum | Eugenol methyl ether | J2 | JM | [79] | |
| Lavandula intermedia | Linalool | J2, Eggs | JM, EHI, GR | [82] | |
| Monarda didyma/fistulosa | γ-terpinene, o-cymene, carvacrol | Eggs, J2 | JM, EHI, GR | [83] | |
| Pogostemon cablin Benth | α-guaiene, patchoulol, α-bulnesene | J2 | JM, P | [84] | |
| Teucrium polium | Limonene, α-pinene, β-pinene | J2 | JM | [85] | |
| Tephrosia toxicaria | β-caryophyllene, germacrene D, α-humulene, bicyclogermacrene | Eggs, J2 | JM, EHI | [86] | |
| Trifolium incarnatum | (Z)-3-hexenyl acetates, (Z)-3-hexane-1-ol, (E)-ocimene, furanoeudesm-1,3-diene | J2 | JM, GR | [87] | |
| Pinus nigra | α-pinene, c-verbenol | J2 | JM | [88] | |
| Hedychium coccineum | E-neradiol, davanone B, spathulenol, eucalyptol | Eggs, J2 | JM, EHI | [89] | |
| Myristica fragrans | Sabinene, α-Pinene | J2 | JM, EHI | [90] | |
| Zanthoxylum alatum | Linalool, DL-limonene, β-myrcene | J2 | JM, EHI, GR | [91] | |
| Piptadenia viridiflora | Benzaldehyde | J2 | JM | [92] |
| Plant Source | Family | Major Components | Nematode Species | Host Plant | Condition/Method | Efficacy | References |
|---|---|---|---|---|---|---|---|
| Brassica nigra | Brassicaceae | Allyl isothiocyanate (AITC) | Meloidogyne incognita | – | In vitro | B. nigra EO showed dose- and time-dependent activity vs. M. incognita. | [63] |
| Mentha longifolia | Lamiaceae | Piperitone oxide | M. incognita | Tomato | In vitro and In vivo | 96 h LC50–EO: 92.7 ppm, PO: 34.2 ppm; PO 2000 ppm reduced galls to 9.5 and egg masses to 11 per root. | [73] |
| Mentha longifolia | Lamiaceae | I-menthone | Meloidogyne hapla | – | In vitro | Egg hatching: M. longifolia EO 21.6%; main component I-menthone (76.9%). | [74] |
| Thymus vulgaris | Lamiaceae | Thymol | Meloidogyne javanica | Coleus | In vitro and In vivo | T. vulgaris nanoemulsion (5000 ppm): 100% M. javanica mortality in vitro; greenhouse population reduced to 671.8 Pf. | [93] |
| Thymus citriodorus | Lamiaceae | Geraniol | M. incognita | Tomato | In vitro and In vivo | Lemon thyme powder (1 g/kg) and water extract suppressed RKNs and promoted beneficial soil microbes/nematodes. | [75] |
| Thymus linearis | Lamiaceae | Thymol | M. incognita | – | In vitro | T. linearis EO showed season-dependent activity vs. M. incognita; winter oil more effective (thymol 35.7%). | [76] |
| Artemisia absinthium | Asteraceae | Borneol acetate, β-terpineol, 1,8-Cineol | M. incognita | – | In vitro | WEO (A. absinthium) showed low nematicidal activity vs. M. incognita in vitro. | [78] |
| Allium sativum | Amaryllidaceae | Diallyl disulfide (DADS), diallyl trisulfide (DATS), methyl allyl trisulfide | M. javanica and M. incognita | Tomato | In vitro and In vivo | Allium EO and hydrolate: LC50 0.011–0.012 mg/mL, LC90 0.015–0.017 mg/mL; J2 mortality high, egg hatch > 84%, reproduction > 70% in tomato. | [64] |
| Cinnamomum cassia | Lauraceae | Cinnamaldehyde | M. incognita | Tomato and Potato | In vitro and In vivo | M. incognita, (E)-Cinnamaldehyde, >68% J2 mortality, >90% egg hatch suppression. | [80] |
| Cinnamomum cassia | Lauraceae | Cinnamaldehyde | Globodera rostochiensis | Tomato and Potato | In vitro and In vivo | G. rostochiensis, EO and (E)-Cinnamaldehyde, 39–42% J2 mortality, >90% egg hatch suppression. | [80] |
| Lavandula intermedia | Lamiaceae | Linalool | M. incognita | Tomato | In vitro and In vivo | J2 reduced 82–96%, egg hatch 43.6%, soil/root density 40–70%, root galling up to 50% at 100 mg·mL−1. | [82] |
| Lavandula × intermedia cv. Sumiens | Lamiaceae | Linalool, Linalool acetate, 1,8-Cineole | Pratylenchus vulnus | Tomato | In vitro and In vivo | Sumiens EO, 75.7% P. vulnus J2 mortality in 4 h. | [82] |
| Monarda didyma, M. fistulosa | Lamiaceae | γ-Terpinene, o-Cymene, Carvacrol | M. incognita | Tomato | In vitro and In vivo | LC50 1.0 μL·mL−1; juvenile mortality high, egg hatch reduced; soil treatment lowered multiplication and galling. | [83] |
| Pogostemon cablin | Lamiaceae | α-Guaiene | M. incognita | – | In vitro | P. cablin EO showed moderate nematicidal activity (LC50) vs. M. incognita in vitro. | [84] |
| Cinnamomum zeylanicum | Lauraceae | Cinnamaldehyde | M. incognita | Tomato | In vitro and In vivo | C. zeylanicum oil, cinnamaldehyde, and oxime: J2 hatch 38–54%, gall/egg formation up to 98% vs. M. incognita. | [98] |
| Schinus terebinthifolius | Anacardiaceae | Terpinen-4-ol, γ-Terpinene, α-Terpineol | M. javanica | Lettuce | In vitro and In vivo | S. terebinthifolius green fruit EO: >80% egg-hatching inhibition, 300% J2 mortality in vitro; ineffective in field (555 J2/100 cm3). | [100] |
| Cuminum cyminum | Apiaceae | γ-Terpinen-7-al, α-Terpinen-7-al, Cuminaldehyde | M. javanica and M. incognita | Tomato | In vitro and In vivo | C. cyminum EO and HL: >70% J2 paralysis (M. incognita, M. javanica), reduced egg differentiation/hatching; complete paralysis at 62.5 μL/L EO in 96 h. | [101] |
| Daucus carota | Apiaceae | Carotol, Daucol, Daucene | M. incognita | – | In vitro | Carrot seed EO, polar fraction, and carotol: strongest activity vs. M. incognita J2s and eggs. | [102] |
| Tephrosia toxicaria | Fabaceae | β-Caryophyllene, Germacrene D, α-Humulene, Bicyclogermacrene | M. javanica and M. enterolobii | – | In vitro | T. toxicaria EO (50–800 μL/mL) reduced J2 hatch and increased mortality of M. enterolobii and M. javanica. | [86] |
| Hedychium coccineum | Zingiberaceae | E-Neradiol, Davanone B, Spathulenol, Eucalyptol | M. incognita | – | In vitro | H. coccineum HCCRO & HCCAO EO: strong activity vs. M. incognita. | [89] |
| Myristica fragrans | Myristicaceae | Sabinene, α-Pinene | Pratylenchus thornei | – | In vitro | M. fragrans EO, max 75.3% P. thornei J2 mortality in 72 h. | [90] |
| Zanthoxylum alatum | Rutaceae | Linalool, DL-Limonene, β-Myrcene | M. incognita | – | In vitro | Z. alatum EO nanoemulsions, LC50 49.9–82.5 µg/mL vs. M. incognita J2. | [91] |
| Allium sativum | Amaryllidaceae | DADS, DATS, MATS | Bursaphelenchus xylophilus | – | In vitro | A. sativum EO: highly nematicidal vs. B. xylophilus (LC50 2.79–37.06 μL/mL). | [106] |
| Allium sativum | Amaryllidaceae | DADS, DATS, MATS | Globodera spp. | – | In vitro | A. sativum EO inhibited Globodera spp. egg hatching, highest activity among tested oils. | [103] |
| Cinnamomum burmanni | Lauraceae | Cinnamaldehyde | Pratylenchus penetrans | – | In vitro | C. burmanni EO, moderate nematicidal activity. | [99] |
| Cinnamomum burmanni | Lauraceae | Cinnamaldehyde | Bursaphelenchus xylophilus | – | In vitro | C. burmanni EO, high nematicidal activity. | [99] |
| Cinnamomum burmanni | Lauraceae | Cinnamaldehyde | M. javanica | – | In vitro | C. burmanni EO, >80% J2 mortality, strong egg-hatching inhibition. | [99] |
| Piptadenia viridiflora | Fabaceae | Benzaldehyde | M. incognita | Tomato | In vitro and In vivo | P. viridiflora oil, benzaldehyde, and oxime: toxic to M. incognita; oxime reduced galls 43–84% and eggs 23–89% in vivo. | [92] |
| Pimpinella anisum | Apiaceae | Trans-anethole | Nacobbus aberrans | – | In vitro | Anise EO, strong activity vs. N. aberrans J2 (LD100 200 µL/L). | [105] |
| Origanum vulgare | Lamiaceae | Carvacrol and Thymol | N. aberrans | – | In vitro | Oregano EO, nematicidal vs. N. aberrans J2, LD100 600 µL/L. | [105] |
| Rosmarinus officinalis | Lamiaceae | 1,8-Cineole, α-Pinene, Camphor | Tylenchulus semipenetrans | – | In vitro | R. officinalis EO, 100% T. semipenetrans J2 mortality in 72 h (15 µL/mL), full egg-hatching inhibition. | [104] |
| Nepeta cataria | Lamiaceae | Not available | M. incognita | Banana | In vitro | N. cataria EO: mortality 72% (crude 3 g/L), 68% (EO 1.2 mL/L), 66% (fixed 3 mL/L) vs. M. incognita. | [94] |
| Mentha longifolia | Lamiaceae | Carvone, p-Cymene, Terpinen-4-ol | Hoplolaimus spp. | – | In vitro | M. longifolia EO (0.05 dilution) reduced Hoplolaimus spp. counts after 72 h (p < 0.05). | [95] |
| Rosmarinus officinalis | Lamiaceae | 1,8-Cineole, α-Pinene, Camphor | Pratylenchus brachyurus | Soybean | In vitro | No significant effect on the population. | [96] |
| Warionia saharae | Asteraceae | Not available | M. javanica | Tomato | In vitro and In vivo | W. saharae EO, >80% J2 mortality in 72 h, reduced galls in vivo. | [97] |
| Calendula officinalis | Asteraceae | Not available | M. javanica | Tomato | In vitro and In vivo | C. officinalis EO, >80% J2 mortality in 72 h, reduced galls in vivo. | [97] |
| Cedrus atlantica | Pinaceae | Not available | M. javanica | Tomato | In vitro and In vivo | C. atlantica EO, >80% J2 mortality in 72 h, reduced galls in vivo. | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dababat, A.; Ulaş, F.; Yüksel, E.; Aasim, M.; Sameeullah, M.; İmren, M. Essential Oils as Sustainable Alternatives for Managing Plant-Parasitic Nematodes: A Comprehensive Review. Sustainability 2025, 17, 10189. https://doi.org/10.3390/su172210189
Dababat A, Ulaş F, Yüksel E, Aasim M, Sameeullah M, İmren M. Essential Oils as Sustainable Alternatives for Managing Plant-Parasitic Nematodes: A Comprehensive Review. Sustainability. 2025; 17(22):10189. https://doi.org/10.3390/su172210189
Chicago/Turabian StyleDababat, Abdelfattah, Furkan Ulaş, Ebubekir Yüksel, Muhammad Aasim, Muhammad Sameeullah, and Mustafa İmren. 2025. "Essential Oils as Sustainable Alternatives for Managing Plant-Parasitic Nematodes: A Comprehensive Review" Sustainability 17, no. 22: 10189. https://doi.org/10.3390/su172210189
APA StyleDababat, A., Ulaş, F., Yüksel, E., Aasim, M., Sameeullah, M., & İmren, M. (2025). Essential Oils as Sustainable Alternatives for Managing Plant-Parasitic Nematodes: A Comprehensive Review. Sustainability, 17(22), 10189. https://doi.org/10.3390/su172210189

