The Role of Lupins and Buckwheat in Sustainable Agriculture, Nutrition, and the Circular Economy
Abstract
1. Introduction
2. Lupinus Recycling for Sustainable Development
2.1. Distribution of Lupins in the World and in Lithuania
2.2. Chemical Composition and Functional Potential of Lupins
2.3. Sustainable Utilization of Lupins in the World and in Lithuania
- Control invasive species;
- Generate renewable energy;
- Recycle nutrients back into agriculture;
- Enhance plant-based food security.
3. Buckwheat Waste Recycling for Sustainable Development
3.1. Buckwheat Cultivation and Yield in Europe and the World
3.2. Nutritional and Chemical Composition of Buckwheat and Valorisation of Its by Products
3.3. Valorisation Pathways and Secondary Uses of Buckwheat Processing Residues
4. Limitations of the Review
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of Food and Agriculture; Electronic Publishing Policy and Support Branch, Communication Division, FAO: Rome, Italy, 2009; pp. 9–19. [Google Scholar]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, L.; Goldewijk, K.K.; Van Der Hoek, K.W.; Beusen, A.H.W.; van Vuuren, D.P.; Willems, J.; Rufino, M.C.; Stehfest, E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. USA 2013, 110, 20882–20887. [Google Scholar] [CrossRef] [PubMed]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Bryant, L.; Rangan, A.; Grafenauer, S. Lupins and Health Outcomes: A Systematic Literature Review. Nutrients 2022, 14, 327. [Google Scholar] [CrossRef]
- Pseudocereals for Global Food Production. 2020. Available online: https://www.cerealsgrains.org/publications/cfw/2020/March-April/Pages/CFW-65-2-0014.aspx?utm_source=chatgpt.com (accessed on 8 September 2025).
- Çevik, A.; Ertas, N. Effect of quinoa, buckwheat and lupine on nutritional properties and consumer preferences of tarhana. Qual. Assur. Saf. Crops Foods 2019, 11, 145–155. [Google Scholar] [CrossRef]
- Ortega Irizo, F.J.; Gavilan Ruiz, J.M.; Jaen Figueroa, I. The Effect of Economic and Cultural Factors on Entrepreneurial Activity: An Approach through Frontier Production Models. Rev. De Econ. Mund. 2020, 55, 25–48. [Google Scholar] [CrossRef]
- Torres, N.; Herrera, I.; Fajardo, L.; Bustamante, R.O. Meta-analysis of the impact of plant invasions on soil microbial communities. BMC Ecol. Evol. 2021, 21, 172. [Google Scholar] [CrossRef]
- Jauni, M.; Ramula, S. Demographic mechanisms of disturbance and plant diversity promoting the establishment of invasive Lupinus polyphyllus. J. Plant Ecol. 2016, 10, 510–517. [Google Scholar] [CrossRef]
- Bacher, S. Global Impacts Dataset of Invasive Alien Species (GIDIAS). Sci. Data. 2025, 12, 832. [Google Scholar] [CrossRef]
- Sideral Plant Mixtures. Available online: https://www.linasagro.lt/prekes/sideraliniu-augalu-misinys-nitrofix (accessed on 28 February 2023).
- List of Invasive Species in Lithuania. 2023. Available online: https://am.lrv.lt/lt/veiklos-sritys-1/gamtos-apsauga/invazines-rusys/invaziniu-lietuvoje-rusiu-sarasas (accessed on 3 March 2023).
- Lupines—An Invasive Species. 2024. Available online: https://vstt.lrv.lt/lt/naujienos/lubinai-invazine-rusis/ (accessed on 7 October 2025).
- Luo, H.; Zhang, Z.; Fang, X.; Wang, Z.; Liu, Z.; Yang, Y.; Zhang, K.; Yi, Z.; Ding, M. Rhizosphere abundant bacteria enhance buckwheat yield, while rare taxa regulate soil chemistry under diversified crop rotations. Agric. Ecosyst. Environ. 2025, 393, 109781. [Google Scholar] [CrossRef]
- Lejinš, A.; Lejina, B. The buckwheat role in crop rotation and weed control in this sowing in long term trial. In Environment. Technology. Resources, Proceedings of the 7th International Scientific and Practical Conference, Rezekne, Latvia, 25–27 June 2009; Volume 1. [Google Scholar]
- Lithuanian Buckwheat Is Appreciated by Both Buyers and Consumers. Available online: https://ukininkopatarejas.lt/naujienos/lietuviskus-grikius-vertina-ir-supirkejai-ir-vartotojai/ (accessed on 23 April 2025).
- Buckwheat Is Making Its Way to Farmers’ Fields. Available online: https://www.agroakademija.lt/s/augalininkyste/grikiai-skinasi-kelia-i-augintoju-laukus-13879/ (accessed on 12 May 2025).
- Buckwheat Cultivation. Available online: https://www.viskas.lt/straipsniai/45533-grikiu-auginimas (accessed on 8 May 2025).
- Bebeli, P.J.; Lazaridi, E.; Chatzigeorgiou, T.; Suso, M.-J.; Hein, W.; Alexopoulos, A.A.; Canha, G.; van Haren, R.J.; Jóhannsson, M.H.; Mateos, C.; et al. State and Progress of Andean Lupin Cultivation in Europe: A Review. Agronomy 2020, 10, 1038. [Google Scholar] [CrossRef]
- Lucas, M.M.; Stoddard, F.L.; Annicchiarico, P.; Frías, J.; Martínez-Villaluenga, C.; Sussmann, D.; Duranti, M.; Seger, A.; Zander, P.M.; Pueyo, J.J. The future of lupin as a protein crop in Europe. Front. Plant Sci. 2015, 6, 705. [Google Scholar] [CrossRef]
- Atambayeva, Z.; Nurgazezova, A.; Amirkhanov, K.; Assirzhanova, Z.; Khaimuldinova, A.; Charchoghlyan, H.; Kaygusuz, M. Unlocking the Potential of Buckwheat Hulls, Sprouts, and Extracts: Innovative Food Product Development, Bioactive Compounds, and Health Benefits—A Review. Pol. J. Food Nutr. Sci. 2024, 74, 293–312. [Google Scholar] [CrossRef]
- Zamaratskaia, G.; Gerhardt, K.; Knicky, M.; Wendin, K. Buckwheat: An underutilized crop with attractive sensory qualities and health benefits. Crit. Rev. Food Sci. Nutr. 2024, 64, 12303–12318. [Google Scholar] [CrossRef]
- Adamović, M.; Stjepanović, M.; Velić, N. Exploring the potential of buckwheat hull-based biosorbents for efficient water pollutant removal. Croat. J. Food Sci. Technol. 2024, 16, 273–289. [Google Scholar] [CrossRef]
- Wolko, B.; Clements, J.C.; Naganowska, B.; Nelson, M.N.; Yang, H. Lupinus. In Wild Crop Relatives: Genomic and Breeding Resources; Springer: Berlin/Heidelberg, Germany, 2011; pp. 153–163. [Google Scholar]
- Lupins—Botany and Global Use in Agriculture. Available online: https://aussielupins.org.au/about/ (accessed on 24 October 2025).
- Pollination Aware Case Study: Lupins. Available online: https://agrifutures.com.au/product/pollination-aware-case-study-lupins/ (accessed on 19 February 2023).
- Carvajal-Larenas, E.F.; Linnemann, R.A.; Nout, J.R.M.; Koziol, M.; Boekel, A.J.S.M. Lupinus mutabilis: Composition, Uses, Toxicology, and Debittering. Crit. Rev. Food Sci. Nutr. 2016, 56, 1454–1487. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.D.; AdhikariB, K.N.; Wilkinson, D.; Buirchell, B.J.; Sweetingham, M.W. Ecogeography of the Old-World lupins. 1. Ecotypic variation in yellow lupin (Lupinus luteus L.). Aust. J. Agric. Res. 2008, 59, 691–701. [Google Scholar] [CrossRef]
- Lupin Production in Poland. Available online: https://www.helgilibrary.com/indicators/lupin-production/poland/ (accessed on 8 September 2025).
- Which Country Produces the Most Lupins? Available online: https://www.helgilibrary.com/charts/which-country-produces-the-most-lupins/ (accessed on 15 June 2025).
- Lupin. Available online: https://www.tridge.com/intelligences/lupin-bean/DE/production (accessed on 5 August 2025).
- Environment, Agriculture and Energy in Lithuania (Edition 2022). Available online: https://osp.stat.gov.lt/en/lietuvos-aplinka-zemes-ukis-ir-energetika-2022/zemes-ukis/augalininkyste (accessed on 11 August 2025).
- Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 27 October 2025).
- Volz, H. Ursachen und Auswirkungen der Ausbreitung von Lupinus Polyphyllus Lindl. Im Bergwiesenökosystem der Rhön und Maßnahmen zu seiner Regulierung. 2003. Available online: https://www.db-thueringen.de/servlets/MCRFileNodeServlet/dbt_derivate_00009704/VolzHarald-2003-10-14.pdf (accessed on 21 October 2025).
- Galkina, M.A.; Ivanovskii, A.A.; Vasilyeva, N.V.; Stogova, A.V.; Zueva, M.A.; Mamontov, A.K.; Bochkov, D.A.; Prokhorov, A.A.; Tkacheva, E.V. Invasive plant Lupinus polyphyllus demonstrates high level of molecular genetic variation within and between populations at East European Plain. Sci. Rep. 2025, 15, 14960. [Google Scholar] [CrossRef]
- Scott, D. The rise to dominance over two decades of Lupinus polyphyllus among pasture mixtures in tussock grassland trials. Proc. N. Z. Grassl. Assoc. 2014, 76, 47–52. [Google Scholar] [CrossRef]
- Invasive Lupines Are Finally Driving Daisies Out of Meadows. Available online: https://www.valstietis.lt/sodyba/lauku-ramunes-is-pievu-baigia-isvyti-invaziniai-lubinai/120194 (accessed on 22 February 2022).
- Joseph, B.; Hensgen, F.; Wachendorf, M. Life Cycle Assessment of bioenergy production from mountainous grasslands invaded by lupine (Lupinus polyphyllus Lindl.). J. Environ. Manag. 2020, 275, 111182. [Google Scholar] [CrossRef] [PubMed]
- Prass, M.; Ramula, S.; Jauni, M.; Setala, H.; Kotze, D.J. The invasive herb Lupinus polyphyllus can reduce plant species richness independently of local invasion age. Biol. Invasions 2022, 24, 425–436. [Google Scholar] [CrossRef]
- Hensgen, F.; Wachendorf, M. The Effect of the Invasive Plant Species Lupinus polyphyllus Lindl. on Energy Recovery Parameters of Semi-Natural Grassland Biomass. Sustainability 2016, 8, 998. [Google Scholar] [CrossRef]
- Eckstein, R.L.; Welk, E.; Klinger, Y.P.; Lennartsson, T.; Wissman, J.; Ludewig, K.; Hansen, W.; Ramula, S. Biological flora of Central Europe—Lupinus polyphyllus Lindley. Perspect. Plant Ecol. Evol. Syst. 2023, 58, 125715. [Google Scholar] [CrossRef]
- EPPO Global Database. Available online: https://gd.eppo.int/taxon/LUPPO (accessed on 20 September 2025).
- Green Manure. Available online: http://www.agrozinios.lt/portal/categories/133/1/0/1/article/10769/zalioji-trasa (accessed on 23 February 2023).
- The Future for Narrow-Leaved Lupins. Available online: https://manoukis.lt/mano-ukis-zurnalas/2005/10/ateitis-siauralapiams-lubinams/ (accessed on 24 October 2025).
- Meiera, C.I.; Reid, B.L.; Sandovala, O. Effects oftheinvasiveplant Lupinus polyphyllus on verticalaccretion of finesedimentandnutrientavailabilityinbarsofthegravel-bed Paloma River. Limnologica 2013, 43, 381–387. [Google Scholar] [CrossRef]
- Hensgen, F.; Wachendorf, M. Producing solid biofuels from semi-natural grasslands invaded by Lupinus polyphyllus. Sustain. Meat Milk Prod. Grassl. 2018, 23, 854. [Google Scholar]
- Ground Lupins, Fertilizer for Citrus Fruits. Available online: https://www.geosism.com/en/fertilizers/121-lupine-1-3-mm-25-kg-ground-lupins-fertilizer-for-citrus-fruits-8010870861016.html (accessed on 3 August 2025).
- Knecht, K.T.; Sanchez, P.; Kinder, D.H. Lupine Seeds (Lupinus spp.): History of Use, Use as An Antihyperglycemic Medicinal, and Use as a Food Plant. In Nuts and Seeds in Health and Disease Prevention, 2nd ed.; Academic Press: London, UK, 2020; pp. 393–402. [Google Scholar]
- Ačko, D.K.; Flajšman, M. Production and Utilization of Lupinus spp. In Production and Utilization of Legumes—Progress and Prospects; IntechOpen: London, UK, 2023; pp. 3–13. [Google Scholar]
- Hassani, M.; Elisa Vallius, E.; Rasi, S.; Sormunen, K. Risk of Invasive Lupinus polyphyllus Seed Survival in Biomass Treatment Processes. Diversity 2021, 13, 264. [Google Scholar] [CrossRef]
- Masiulytė, D. Synthesis of Potassium Dihydrogen Phosphate and Production of Bioactive Compound Fertilizers. 2024, p. 58. Available online: https://epubl.ktu.edu/object/elaba:199304530/index.html (accessed on 14 September 2025).
- Sidaraitė, R. Obtaining Liquid Complex Fertilizers with Trace Elements. 2023, p. 70. Available online: https://epubl.ktu.edu/object/elaba:169601015/ (accessed on 4 September 2025).
- Jančaitienė, K.; Sidaraitė, R. Liquid Complex Fertilizers with Bio-Additives. Proceedings 2023, 92, 30. [Google Scholar] [CrossRef]
- van de Noort, M. Lupin: An Important Protein and Nutrient Source. Sustain. Protein Sources 2017, 165–183. [Google Scholar] [CrossRef]
- Invasive Alien Species. Available online: https://environment.ec.europa.eu/topics/nature-and-biodiversity/invasive-alien-species_en (accessed on 31 October 2025).
- Biodiversity Strategy for 2030. Available online: https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en (accessed on 5 June 2025).
- Buckwheat: The Game-Changer in The Food Industry. Available online: https://seedea.pl/buckwheat-the-game-changer-in-the-food-industry/ (accessed on 10 September 2025).
- United Nations Data Retrieval System. Available online: https://data.un.org/Data.aspx?d=FAO&f=itemCode:89 (accessed on 2 October 2025).
- Zhu, Y.G.; He, Y.Q.; Smith, S.E.; Smith, F.A. Buckwheat (Fagopyrum esculentum Moench) has high capacity to take up phosphorus (P) from a calcium (Ca)-bound Source. Plant Soil. 2002, 239, 1–8. [Google Scholar] [CrossRef]
- Myers, R. Growing Buckwheat for Grain or Cover Crop Use. Publication No. G4163. 2018. Available online: https://extension.missouri.edu/publications/g4163 (accessed on 29 October 2025).
- Kwiatkowski, J. Buckwheat Breeding and Seed Production in Poland. Fagopyrum 2023, 40, 29–40. [Google Scholar] [CrossRef]
- Góral, P. Buckwheat: 2022 Planting Increases by 21% in Poland but Prices Likely to Stay High. Available online: https://www.linkedin.com/pulse/buckwheat-2022-planting-increases-21-poland-prices-likely-piotr-g%C3%B3ral/ (accessed on 5 June 2025).
- Slight Reduction in Buckwheat Acreage in Ukraine is Predicted. Available online: https://ukragroconsult.com/en/news/slight-reduction-in-buckwheat-acreage-in-ukraine-is-predicted/?utm_source=chatgpt.com (accessed on 16 August 2025).
- Pocienė, O.; Šlinkšienė, R. Studies on the Possibilities of Processing Buckwheat Husks and Ash in the Production of Environmentally Friendly Fertilizers. Agriculture 2022, 12, 193. [Google Scholar] [CrossRef]
- Matseychik, I.V.; Korpacheva, S.M.; Lomovsky, I.; Serasutdinova, K.R. Influence of buckwheat by-products on the antioxidant activity of functional desserts. IOP Conf. Ser. Earth Environ. Sci. 2021, 640, 022038. [Google Scholar] [CrossRef]
- Tkachenko, A.O.; Sahdieieva, O.A.; Krusir, G.V.; Malovanyy, M.S.; Vitiuk, A.V. Buckwheat husk biochar: Preparation and study of acid-base and ion-exchange properties. J. Chem. Technol. 2024, 32, 694–705. Available online: http://chemistry.dnu.dp.ua/article/view/306261 (accessed on 7 November 2025).
- Jara, P.; Schoeninger, V.; Dias, L.; Siqueira, V.; Lourente, E. Physicochemical quality characteristics of buckwheat flour. Eng. Agric. 2022, 42, 4. [Google Scholar] [CrossRef]
- Wang, F.; Du, C.; Chen, J.; Shi, L.; Li, H. A New Method for Determination of Pectin Content Using Spectropho-tometry. Polymers 2021, 13, 2847. [Google Scholar] [CrossRef]
- Krusir, G.; Sagdeeva, O.; Malovanyy, M.; Shunko, H.; Gnizdovskyi, O. Investigation of Enzymatic Degradation of Solid Winemaking Wastes. J. Ecol. Eng. 2020, 21, 72–79. [Google Scholar] [CrossRef]
- Pillsbury, D.M.; Kulchar, G.V. The use of the Hagedorn-Jensen method in the determination of skin glucose. J. Biol. Chem. 1934, 106, 351–356. [Google Scholar] [CrossRef]
- Schumacher, B.A. Methods for the determination of total organic carbon (TOC) in soils and sediments. Ecol. Risk. Assess. Support Cent. 2002, 1–23. Available online: https://www.researchgate.net/publication/291996839_Methods_for_the_determination_of_total_organic_carbon_TOC_in_soils_and_sediments_ecological_risk_assessment_support_center (accessed on 12 September 2025).
- ISO 11261:1995; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. ISO: Geneva, Switzerland, 1995. Available online: https://www.iso.org/standard/19239.html (accessed on 25 October 2025).
- EN 15959:2011; Fertilizers—Determination of Total Phosphorus—Spectrometric Method. European committee for standardization: Brussels, Belgium, 2011. Available online: https://standards.iteh.ai/catalog/standards/cen/331263f2-ad7a-4d20-bccb-6bfafb797e62/en-15959-2011?srsltid=AfmBOoocuXRn25xA214THvX7fQWa3OCTJZLU8SQyGl1ZtOYpcDb2aOVA (accessed on 25 October 2025).
- Ullah, R.; Abbas, Z.; Bilal, M.; Habib, F.; Iqbal, J.; Bashir, F.; Noor, S.; Qazi, M.A.; Niaz, A.; Baig, K.S.; et al. Method development and validation for the determination of potassium (K2O) in fertilizer samples by flame photometry technique. J. King. Saud. Univ Sci. 2022, 34, 102070. [Google Scholar] [CrossRef]
- ISO 11047:1998; Soil Quality—Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel and Potassium by Atomic Absorption Spectrometry. ISO: Geneva, Switzerland, 1998. Available online: https://cdn.standards.iteh.ai/samples/24010/7d67c069009f4c999844d77b20e00e38/ISO-11047-1998.pdf (accessed on 25 October 2025).
- Kulokas, M.; Praspaliauskas, M.; Pedišius, N. Investigation of Buckwheat Hulls as Additives in the Production of Solid Biomass Fuel from Straw. Energies 2021, 14, 265. [Google Scholar] [CrossRef]
- ISO 16948:2015; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. ISO: Geneva, Switzerland, 2015. Available online: https://cdn.standards.iteh.ai/samples/58004/c961056749c340a48a61976079c7aa9f/ISO-16948-2015.pdf (accessed on 26 October 2025).
- ISO 16994:2016; Solid Biofuels—Determination of Total Content of Sulphur and Chlorine. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/70097.html (accessed on 26 October 2025).
- Praspaliauskas, M.; Pedišius, N.; Striūgas, N. Elemental Migration and Transformation from Sewage Sludge to Residual Products during the Pyrolysis Process. Energy Fuels 2018, 32, 5199–5208. [Google Scholar] [CrossRef]
- Yildiz, J.M.; Cwalina, P.; Obidziński, S. A comprehensive study of buckwheat husk co-pelletization for utilization via combustion. Biomass Conv. Bioref. 2024, 14, 27925–27942. [Google Scholar] [CrossRef]
- Klintsavich, V.N.; Flyurik, E.A. Methods of use of buckwheat husband sowing (review). Trudi BGTU 2020, 1, 68–81. Available online: https://www.researchgate.net/publication/344905964_METHODS_OF_USE_OF_BUCKWHEAT_HUSBAND_SOWING_REVIEW (accessed on 15 September 2025).
- Holodilina, T.N.; Antimonov, C.V.; Hanin, V.P. Research into the possibilities of increasing the nutritional value of buckwheat husks (Issledovanie vozmozhnostei povishenia pitatelnoi cennosti grechnevoi luzgi). Vestnik OGY 2004, 10, 153–156. Available online: http://vestnik.osu.ru/035/pdf/31.pdf (accessed on 2 October 2025).
- Vojtíšková, P.; Švec, P.; Kubáň, V.; Krejzová, E.; Bittová, M.; Kráčmar, S.; Svobodová, B. Chemical composition of buckwheat plant parts and selected buckwheat products. Potravin. Sci. J. Food Ind. 2014, 8, 247–253. [Google Scholar] [CrossRef]
- Suzuki, T.; Morishita, T.; Kim, S.-J.; Park, S.-U.; Woo, S.-H.; Noda, T.; Takigawa, S. Physiological of Ruthin in the Buckwheat Plant. JARQ 2015, 49, 37–43. Available online: https://www.jstage.jst.go.jp/article/jarq/49/1/49_37/_pdf (accessed on 6 October 2025). [CrossRef]
- Aligning the Circular Economy and the Bioeconomy at EU and National Level. Available online: https://www.eesc.europa.eu/en/our-work/opinions-information-reports/opinions/aligning-circular-economy-and-bioeconomy-eu-and-national-level (accessed on 1 August 2025).
- Sofi, S.A.; Ahmed, N.; Farooq, A.; Rafiq, S.; Zargar, S.M.; Kamran, F.; Dar, T.A.; Mir, S.A.; Dar, B.N.; Khaneghah, A.M. Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten-free products: An updated overview. Food Sci. Nutr. 2023, 11, 2256–2276. [Google Scholar] [CrossRef]
- Lițoiu, A.A.; Păucean, A.; Lung, C.; Zmuncilă, A.; Chiș, M.S. An Overview of Buckwheat—A Superfood with Applicability in Human Health and Food Packaging. Plants 2025, 14, 2200. [Google Scholar] [CrossRef]
- Wang, N.; Dong, Y.; Wang, S.; Wang, J.; Wu, N. Changes in nutritional and antioxidant properties, structure, and flavour compounds of Tartary buckwheat (Fagopyrum tataricum) sprouts during domestic cooking. Int. J. Gastron. Food Sci. 2024, 36, 100914. [Google Scholar] [CrossRef]
- ISO 18122:2015; Solid Biofuels—Determination of Ash Content. ISO: Geneva, Switzerland, 2015. Available online: https://cdn.standards.iteh.ai/samples/61515/605c1b011d6144d49b08566ec7a63521/ISO-18122-2015.pdf (accessed on 30 October 2025).
- ISO 18123:2015; Solid Biofuels—Determination of the Content of Volatile Matter. ISO: Geneva, Switzerland, 2015. Available online: https://cdn.standards.iteh.ai/samples/61516/adf43f52f1fa4d15be9eb8f05e833d69/ISO-18123-2015.pdf (accessed on 30 October 2025).
- ISO 18125:2017; Solid Biofuels—Determination of Calorific Value. ISO: Geneva, Switzerland, 2017. Available online: https://cdn.standards.iteh.ai/samples/61517/4fccd4123eb64aa4a3934a379744609c/ISO-18125-2017.pdf (accessed on 30 October 2025).
- Somin, V.A.; Komarova, L.F.; Kutalova, A.V. Study of buckwheat husk application for water demineralisation. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Appl. Biochem. Biotechnol. 2020, 10, 213–222. [Google Scholar] [CrossRef]
- Olszańska, N.A.; Figiel, A.; Pląskowska, E.; Twardowski, J.; Gębarowska, E.; Kucharska, A.Z.; Łętowska, S.A.; Spychaj, R.; Lech, K.; Liszewski, M. Qualitative and quantitative assessment of buckwheat husks as a material for use in therapeutic mattresses. Int. J. Environ. Res. Public Health 2021, 18, 1949. [Google Scholar] [CrossRef]
- Siauciunas, R.; Valanciene, V. Influence of buckwheat hulls on the mineral composition and strength development of easily fusible clay body. Appl. Clay Sci. 2020, 197, 105794. [Google Scholar] [CrossRef]
- Vázquez-Fletes, R.C.; Sadeghi, V.; González-Núñez, R.; Rodrigue, D. Effect of Surface Modification on the Properties of Buckwheat Husk—High-Density Polyethylene Biocomposites. J. Compos. Sci. 2023, 7, 429. [Google Scholar] [CrossRef]
- Mostovoy, A.; Eremeeva, N.; Shcherbakov, A.; Lopukhova, M.; Ussenkulova, S.; Zhunussova, E.; Bekeshev, A. Sorption Activity of Oil Sorbents Based on the Secondary Cellulose-Containing Raw Materials of Buckwheat Cereal Production. Molecules 2025, 30, 2285. [Google Scholar] [CrossRef]
- Zhou, L.; Chu, J.; Zhang, Y.; Wang, Q.; Ye, Y.; Zhao, B. Effect of Biochar Application on the Improvement of Soil Properties and Buckwheat Yield on Two Contrasting Soil Types in a Semi-Arid Region of Inner Mongolia. Agronomy 2024, 14, 1137. [Google Scholar] [CrossRef]
- Mumtaz, W.; Czarnowska-Kujawska, M.; Klepacka, J. Effect of Buckwheat Husk Addition on Antioxidant Activity, Phenolic Profile, Color, and Sensory Characteristics of Bread. Molecules 2025, 30, 3625. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, W.; Klepacka, J.; Czarnowska-Kujawska, M. Modification of Mineral Content in Bread with the Addition of Buckwheat Husk. Appl. Sci. 2025, 15, 4455. [Google Scholar] [CrossRef]
- Cherkashina, N.I.; Kuprieva, O.V.; Pushkarskaya, D.V.; Kashibadze, N.V.; Shrubchenko, L.F. Modification of buckwheat husk powder and creation of composite material on its basis. Phys. Scr. 2024, 99, 105921. [Google Scholar] [CrossRef]
- Gonçalves, M.A.A.; Salvador, R.; Francisco, A.C.; Piekarski, C.M. Value recovery from waste in the processing of buckwheat: Opportunities for a circular bioeconomy. Eng. Rep. 2024, 6, 12757. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, Z.; Liang, J.; Liang, C. Natural biomass-derived porous carbons from buckwheat hulls used as anode for lithium-ion batteries. Diamond Relat. Mater. 2021, 119, 108553. [Google Scholar] [CrossRef]







| Country | Harvested Area (ha) | Yield (kg/ha) | Production (t) |
|---|---|---|---|
| Australia | 692,664 | 1847.5 | 1,279,707 |
| Poland | 157,110 | 1752.4 | 275,320 |
| Russia | 65,421 | 2084.7 | 136,384 |
| Germany | 25,400 | 1791.3 | 45,500 |
| Belarus | 2733 | 1739.1 | 4752 |
| Lithuania | 3670 | 1250.7 | 4590 |
| Other European countries (Czechia, Finland, France, Estonia, etc.) | 288,843 | 1780.7 | 514,341 |
| Chile | 17,001 | 1918 | 32,608 |
| Peru | 11,087 | 1473.5 | 16,337 |
| Greece | 13,290 | 1313 | 17,450 |
| Ukraine | 1400 | 1764.3 | 2470 |
| Romania | 170 | 823.5 | 140 |
| Content of Macronutrients and Secondary Substances, mg/g | ||||||
|---|---|---|---|---|---|---|
| Species/Cultivars | N | P | K | Mg | Ca | Na |
| Narrow-leavedlupin | ||||||
| “Dalbor” | 49.5 | 4.3 | 6.26 | 1.71 | 1.47 | 0.12 |
| “Regent“ | 49.3 | 4.2 | 10.6 | 1.79 | 1.44 | 0.10 |
| Yellowlupin | ||||||
| “Lord“ | 63.5 | 6.3 | 11.76 | 3.0 | 1.21 | 0.13 |
| “Perkoz“ | 59.3 | 6.2 | 11.90 | 2.6 | 1.49 | 0.10 |
| Whitelupin | ||||||
| “Butan“ | 57.2 | 4.9 | 12.03 | 1.8 | 0.15 | 0.10 |
| “Boros“ | 55.8 | 4.8 | 11.93 | 1.8 | 0.15 | 0.10 |
| Bluelupin | ||||||
| “Polyphyllus” | 65.1 | 3.3 | 4.2 | 1.3 | 1.1 | 0.11 |
| Country | Harvested Area (ha) | Yield (t/ha) * | Production (t) |
|---|---|---|---|
| World | 2,940,573.00 | 1.03 | 3,036,090.56 |
| Europe | 1,933,499.00 | 1.13 | 2,181,933.28 |
| Russia | 1,497,783.00 | 1.02 | 1,524,879.00 |
| Asia | 852,994.00 | 0.80 | 681,030.55 |
| China | 632,746.00 | 0.80 | 508,843.88 |
| Ukraine | 185,300.00 | 0.97 | 180,440.00 |
| Kazakhstan | 141,424.00 | 0.85 | 120,379.00 |
| North America | 84,884.00 | 1.04 | 88,215.02 |
| Poland | 78,027.00 | 1.45 | 113,113.00 |
| USA | 79,084.00 | 1.05 | 82,815.02 |
| France | 74,883.00 | 3.52 | 263,485.00 |
| Japan | 62,900.00 | 0.55 | 34,400.00 |
| Lithuania | 48,499.00 | 1.10 | 53,221.00 |
| South America | 47,252.00 | 1.33 | 62,679.93 |
| Belarus | 17,550.00 | 1.03 | 18,010.00 |
| Georgia | 102.00 | 1.09 | 111.47 |
| Components | Health Effects | Industrial Applications |
|---|---|---|
| Proteins and bioactive peptides | Regulate cholesterol and blood pressure, support muscle mass | Protein-enriched foods, functional ingredients |
| Dietary fibres | Improve gut microbiota, lower glycemic index | Health products, fibre supplements |
| Flavonoids (rutin, quercetin) | Antioxidant, anti-inflammatory, anti-atherosclerotic effects | Natural antioxidants, functional food additives |
| Phenolic compounds | Antioxidant, potential anticancer properties | Shelf-life extension, nutraceuticals |
| Minerals (K, Mg, Ca, Fe, Zn, P) | Support bone health, cardiovascular system, immune response | Mineral fortification of foods |
| Vitamins (B group, E) | Contribute to metabolism and antioxidant defence | Functional food supplements |
| Extracts from buckwheat components | Provide bioactivity for preservation | Biodegradable and active food packaging |
| Plant Part | Country of Sampling | Parameter (Units) | Value | Source/Methods |
|---|---|---|---|---|
| Buckwheat husk | Russia | Water, (%) Na (mg%) K (mg%) Ca (mg%) Fe (mg%) Proteins (%) Sugar (%) Cellulose (%) Pectin (%) Crude ash (%) Crude fat (%) | 7.00 ± 0.3 1000.0 ± 0.21 840.0 ± 0.36 260.0 ± 0.2 480.0 ± 0.1 4.83 ±0.1 41.31 ± 0.15 36.27 ± 0.31 3.74 ± 0.1 6.82 ± 0.0.4 trace | [66]/[not provided] |
| Ukraine | Proteins (%) Pectins (%) Hemicellulose (%) Cellulose (%) Lignin (%) Ash (%) | 4.8 ± 0.1 3.1 ± 0.1 15.5 ± 0.2 27.4 ± 0.1 36.3 ± 0.1 3.6 ± 0.1 | [67]/[68,69,70,71] | |
| Lithuania | N (%) P2O5(soluble HCl) (%) K2O(soluble HCl) (%) CaO(soluble HCl) (%) MgO(soluble HCl) (%) C(d.m.) (%) Fe(soluble HCl) (mg/kg) Zn(soluble HCl) (mg/kg) | 2.28 ± 0.27 0.4 ± 0.05 7.6 ± 0.21 029 ± 0.07 0.88 ± 0.09 54.35 ± 0.58 212.4 ± 0,92 86.6 ± 1.01 | [65]/[72,73,74,75,76] | |
| Lithuania | N (%) H (%) S (%) Cl (%) C (%) O (%) | 2.50 5.22 0.11 0.014 41.82 46.47 | [77]/[78,79,80] | |
| Poland | C (%) H (%) N (%) S (%) Cl (%) O (%) Ca (%) Mg (%) K (%) Na (%) Si (g/kg) | 50.88 5.50 0.54 0.119 0.002 41.16 0.57 0.12 0.57 0.0004 1.34 | [81]/[78,79] | |
| Buckwheat husk ash | Lithuania | N (%) P2O5(soluble HCl) (%) K2O(soluble HCl) (%) CaO(soluble HCl) (%) MgO(soluble HCl) (%) C (%) Fe(soluble HCl) (mg/kg) Zn(soluble HCl) (mg/kg) | 0.66 ± 0.09 5.84 ± 0.43 38.63 ± 1.82 12.18 ± 0.38 3.56 ± 0.18 29.53 ± 0.50 1331.25 ± 0.93 541.13 ± 2.86 | [65]/[72,73,74,75,76] |
| Lithuania | Cu(soluble HCl) (mg/kg) Al (mg/kg) Fe (mg/kg) K (mg/kg) Ca (mg/kg) Mg (mg/kg) P (mg/kg) Na (mg/kg) Si (mg/kg) S (mg/kg) | 385.63 ± 2.56 2813 ± 0. 3311.0 12.53 142.61 98.05 102.78 828.00 22.53 0.11 | [77]/[80] | |
| Belarus | SiO2 (%) Al2O3 (%) Fe2O3 (%) CaO (%) MgO (%) SO3 (%) Na2O (%) K2O (%) MnO (%) | 16.12 1.22 1.3 50.04 3.1 3.62 3.91 19.71 0.50 | [82,83]/[not provided] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jančaitienė, K.; Pocienė, O.; Šlinkšienė, R. The Role of Lupins and Buckwheat in Sustainable Agriculture, Nutrition, and the Circular Economy. Sustainability 2025, 17, 10061. https://doi.org/10.3390/su172210061
Jančaitienė K, Pocienė O, Šlinkšienė R. The Role of Lupins and Buckwheat in Sustainable Agriculture, Nutrition, and the Circular Economy. Sustainability. 2025; 17(22):10061. https://doi.org/10.3390/su172210061
Chicago/Turabian StyleJančaitienė, Kristina, Odeta Pocienė, and Rasa Šlinkšienė. 2025. "The Role of Lupins and Buckwheat in Sustainable Agriculture, Nutrition, and the Circular Economy" Sustainability 17, no. 22: 10061. https://doi.org/10.3390/su172210061
APA StyleJančaitienė, K., Pocienė, O., & Šlinkšienė, R. (2025). The Role of Lupins and Buckwheat in Sustainable Agriculture, Nutrition, and the Circular Economy. Sustainability, 17(22), 10061. https://doi.org/10.3390/su172210061

