Macropore Characteristics and Their Contribution to Sulfonamide Antibiotics Leaching in a Calcareous Farmland Entisol
Abstract
1. Introduction
2. Methodology
2.1. Chemicals and Reagents
2.2. Study Area and Soil Sampling
2.3. Soil Hydraulic Properties
2.4. Macropore Characterization
2.4.1. Field Dye Tracing Experiment
2.4.2. Micro-CT Scan and Macropore Network Analysis
2.5. Soil Column Experiments
2.5.1. Breakthrough Curves (BTCs) and Modeling
2.5.2. Quantification of Br− Tracer and Antibiotics
2.6. Statistical Analysis
3. Results and Discussion
3.1. Soil Pore Distribution by SWRC Measurement
3.2. Soil Macropore Characteristics
Stained Flow and Macropore Parameters Derived from CT Scan
3.3. Relationship of Saturated Hydraulic Conductivity and Macroporosity
3.4. Macropore Flow Impact on Bromide and Sulfonamide Leaching
3.5. Breakthrough Curve Modeling and Parameter Insights
3.6. Impact of Flow Rate and Soil Depth on Breakthrough Behavior
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gbadegesin, L.A.; Tang, X.; Liu, C.; Cheng, J. Transport of Veterinary Antibiotics in Farmland Soil: Effects of Dissolved Organic Matter. Int. J. Environ. Res. Public Health 2022, 19, 1702. [Google Scholar] [CrossRef]
- Qiao, M.; Chen, W.; Su, J.; Zhang, B.; Zhang, C. Fate of tetracyclines in swine manure of three selected swine farms in China. J. Environ. Sci. 2012, 24, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef]
- Gworek, B.; Kijeńska, M.; Wrzosek, J.; Graniewska, M. Pharmaceuticals in the Soil and Plant Environment: A Review. Water Air Soil Pollut. 2021, 232, 145. [Google Scholar] [CrossRef]
- Conde-Cid, M.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Fernández-Calviño, D.; Arias-Estévez, M. Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks. Processes 2020, 8, 1479. [Google Scholar] [CrossRef]
- dos Santos Neto, S.M.; Coutinho, A.P.; Antonino, A.C.D. Sorption of sulfadiazine and flow modeling in an alluvial deposit of a dry riverbed in the Brazilian semiarid. J. Contam. Hydrol. 2021, 241, 103818. [Google Scholar] [CrossRef]
- Weiss, K.; Schüssler, W.; Porzelt, M. Sulfamethazine and flubendazole in seepage water after the sprinkling of manured areas. Chemosphere 2008, 72, 1292–1297. [Google Scholar] [CrossRef]
- Liu, X.; He, Y.; Li, J.; Li, J.; Zhang, J.; Tang, X. Does biochar field aging reduce the kinetic retention for weakly hydrophobic antibiotics in purple soil? Biochar 2025, 7, 69. [Google Scholar] [CrossRef]
- Ostermann, A.; Siemens, J.; Welp, G.; Xue, Q.; Lin, X.; Liu, X.; Amelung, W. Leaching of veterinary antibiotics in calcareous Chinese croplands. Chemosphere 2013, 91, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, J.M.H.; Flury, M. Uniform and Preferential Flow Mechanisms in the Vadose Zone. In Conceptual Models of Flow and Transport in The Fractured Vadose Zone; Academic Press: Washington, DC, USA, 2001; Available online: http://www.nap.edu/catalog/10102.html (accessed on 4 September 2025).
- Mamun, A.A. Characterization of Water Flow and Solute Transport Driven by Preferential Flow in Soil Vadose Zone. Master’s Thesis, Clemson University, Clemson, SC, USA, 2022. Available online: https://tigerprints.clemson.edu/all_dissertations/3010 (accessed on 4 September 2025).
- Mosthaf, K.; Rolle, M.; Petursdottir, U.; Aamand, J.; Jørgensen, P.R. Transport of Tracers and Pesticides Through Fractured Clayey Till: Large Undisturbed Column Experiments and Model-Based Interpretation. Water Resour. Res. 2021, 57, e2020WR028019. [Google Scholar] [CrossRef]
- Wang, Y.; Ruan, J.; Li, Y.; Kong, Y.; Cao, L.; He, W. Soil Macropore and Hydraulic Conductivity Dynamics of Different Land Uses in the Dry–Hot Valley Region of China. Water 2023, 15, 3036. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Stüben, D.; Norra, S.; Memon, M. Soil structure and flow rate-controlled molybdate, arsenate and chromium(III) transport through field columns. Geoderma 2011, 161, 126–137. [Google Scholar] [CrossRef]
- Bøe, F.N. The Effect of Freezing and Thawing on Transport of Pesticides Through Macroporous Soils and the Potential Risk Towards the Aquatic Environment. Master’s Thesis, Norwegian University of Life Sciences, As, Norway, 2017. [Google Scholar]
- Kolupaeva, V.N.; Kokoreva, A.A.; Belik, A.A.; Pletenev, P.A. Study of the behavior of the new insecticide cyantraniliprole in large lysimeters of the Moscow State University. Open Agric. 2019, 4, 599–607. [Google Scholar] [CrossRef]
- Kördel, W.; Klein, M. Prediction of leaching and groundwater contamination by pesticides. Pure Appl. Chem. 2006, 78, 1081–1090. [Google Scholar] [CrossRef]
- Pan, F.; Xiao, K.; Guo, Z.; Li, H. Effects of fiddler crab bioturbation on the geochemical migration and bioavailability of heavy metals in coastal wetlands. J. Hazard. Mater. 2022, 437, 129380. [Google Scholar] [CrossRef] [PubMed]
- Quinn, R.; Dussaillant, A. The impact of macropores on heavy metal retention in sustainable drainage systems. Hydrol. Res. 2018, 49, 517–527. [Google Scholar] [CrossRef]
- Nahar, K.; Niven, R.K. An Analysis of Miscible Displacement and Numerical Modelling of Glyphosate Transport in Three Different Agricultural Soils. Agronomy 2023, 13, 2539. [Google Scholar] [CrossRef]
- Rukh, S.; Akhtar, M.S.; Alshehri, F.; Mehmood, A.; Malik, K.M.; Almadani, S.; Khan, A.; Shahab, M. Modeling the Transport of Inorganic Arsenic Species through Field Soils: Irrigation and Soil Structure Effect. Water 2024, 16, 386. [Google Scholar] [CrossRef]
- Helmhart, M.; O’Day, P.A.; Garcia-Guinea, J.; Serrano, S.; Garrido, F. Arsenic, Copper, and Zinc Leaching through Preferential Flow in Mining-Impacted Soils. Soil Sci. Soc. Am. J. 2012, 76, 449–462. [Google Scholar] [CrossRef]
- Tuyishimire, E.; Cui, J.; Tang, X.; Sun, Z.; Cheng, J. Interactive Effects of Honeysuckle Planting and Biochar Amendment on Soil Structure and Hydraulic Properties of Hillslope Farmland. Agriculture 2022, 12, 414. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Vomocil, J.A.; Flocker, W.J. Degradation of Structure of Yolo Loam by Compaction. Soil Sci. Soc. Am. J. 1965, 29, 7–12. [Google Scholar] [CrossRef]
- Cui, J.; Tang, X.; Zhang, W.; Liu, C. The Effects of Timing of Inundation on Soil Physical Quality in the Water-Level Fluctuation Zone of the Three Gorges Reservoir Region, China. Vadose Zo J. 2018, 17, 180043. [Google Scholar]
- Wang, F.; Wang, G.; Cui, J.; Guo, L.; Mello, C.R.; Boyer, E.W.; Tang, X.; Yang, Y. Preferential flow patterns in forested hillslopes of east Tibetan Plateau revealed by dye tracing and soil moisture network. Eur. J. Soil Sci. 2022, 73, e13294. [Google Scholar] [CrossRef]
- Li, M.; Yao, J.; Yan, R.; Cheng, J. Effects of Infiltration Amounts on Preferential Flow Characteristics and Solute Transport in the Protection Forest Soil of Southwestern China. Water 2021, 13, 1301. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, Y.; Dai, Q. Effects of preferential flow on soil nutrient transport in karst slopes after recultivation. Environ. Res. Lett. 2023, 18, 034012. [Google Scholar] [CrossRef]
- Defterdarović, J.; Krevh, V.; Filipović, L.; Kovač, Z.; Phogat, V.; He, H.; Baumgartl, T.; Filipović, V. Using Dye and Bromide Tracers to Identify Preferential Water Flow in Agricultural Hillslope Soil under Controlled Conditions. Water 2023, 15, 2178. [Google Scholar] [CrossRef]
- Schneider, A.; Hirsch, F.; Raab, A.; Raab, T. Dye Tracer Visualization of Infiltration Patterns in Soils on Relict Charcoal Hearths. Front. Environ. Sci. 2018, 6, 143. [Google Scholar] [CrossRef]
- van Schaik, N.L.M.B. Spatial variability of infiltration patterns related to site characteristics in a semi-arid watershed. Catena 2009, 78, 36–47. [Google Scholar] [CrossRef]
- Pushpanjali; Reddy, K.S.; Dhimate, A.S.; Karthikeyan, K.; Samuel, J.; Reddy, A.G.K.; Kumar, N.R.; Rao, K.V.; Pankaj, P.K.; Rohit, J.; et al. Soil preferential flow dynamics in the southern drylands of India—A watershed based approach. Front. Water 2025, 6, 1457680. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, K.; Zhou, H.; Lin, H.; Li, D.; Peng, X. Linking saturated hydraulic conductivity and air permeability to the characteristics of biopores derived from X-ray computed tomography. J. Hydrol. 2019, 571, 1–10. [Google Scholar] [CrossRef]
- Bolte, S.; Cordelières, F.P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006, 224, 213–232. [Google Scholar] [CrossRef]
- Jefferies, D.A.; Heck, R.J.; Thevathasan, N.V.; Gordon, A.M. Characterizing soil surface structure in a temperate tree-based intercropping system using X-ray computed tomography. Agrofor. Syst. 2014, 88, 645–656. [Google Scholar] [CrossRef]
- Doube, M.; Kłosowski, M.M.; Arganda-Carreras, I.; Cordelières, F.P.; Dougherty, R.P.; Jackson, J.S.; Schmid, B.; Hutchinson, J.R.; Shefelbine, S.J. BoneJ: Free and extensible bone image analysis in ImageJ. Bone 2010, 47, 1076–1079. [Google Scholar] [CrossRef]
- Zhou, Y.; Yi, Y.J.; Liu, H.X.; Tang, C.H.; Zhu, Y.L.; Zhang, S.H. Effect of geomorphologic features and climate change on vegetation distribution in the arid hot valleys of Jinsha River, Southwest China. J. Mt. Sci. 2022, 19, 2874–2885. [Google Scholar] [CrossRef]
- Jacobsen, O.; Moldrup, P.; Larsen, C.; Konnerup, L.; Petersen, L. Particle transport in macropores of undisturbed soil columns. J. Hydrol. 1997, 196, 185–203. [Google Scholar] [CrossRef]
- Park, J.Y.; Huwe, B. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils. Environ. Pollut. 2016, 213, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Gbadegesin, L.A.; Liu, X.; Tang, X.; Liu, C.; Cui, J. Leaching of Sulfadiazine and Florfenicol in an Entisol of a Chicken-Raising Orchard: Impact of Manure-Derived Dissolved Organic Matter. Agronomy 2022, 12, 3228. [Google Scholar] [CrossRef]
- Imůnek, J.; Genuchten, M.T.; van Šejna, M. The Hydrus-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media; Version 3.0, Hydrus Software Series 1; Department of Environmental Sciences, University of California Riverside: Riverside, CA, USA, 2005. [Google Scholar]
- Hillel, D. Soil and Water: Physical Principles and Processes; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Puppala, A.J.; Punthutaecha, K.; Vanapalli, S.K. Soil-Water Characteristic Curves of Stabilized Expansive Soils. J. Geotech. Geoenvironmental Eng. 2006, 132, 736–751. [Google Scholar] [CrossRef]
- Nimmo, J.R. The processes of preferential flow in the unsaturated zone. Soil Sci. Soc. Am. J. 2021, 85, 1–27. [Google Scholar] [CrossRef]
- Jabro, J.; Stevens, W.; Iversen, W.; Sainju, U.; Allen, B.; Dangi, S.; Chen, C. Soil-Water Retention Curves and Pore-Size Distribution in a Clay Loam Under Different Tillage Systems. Land 2024, 13, 1987. [Google Scholar] [CrossRef]
- Radolinski, J.; Le, H.; Hilaire, S.S.; Xia, K.; Scott, D.; Stewart, R.D. A spectrum of preferential flow alters solute mobility in soils. Sci. Rep. 2022, 12, 4261. [Google Scholar] [CrossRef]
- Yao, J.; Cheng, J.; Sun, L.; Zhang, X.; Zhang, H. Effect of Antecedent Soil Water on Preferential Flow in Four Soybean Plots in Southwestern China. Soil Sci. 2017, 182, 83–93. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, R. Heterogeneous soil water flow and macropores described with combined tracers of dye and iodine. J. Hydrol. 2011, 397, 105–117. [Google Scholar] [CrossRef]
- Budhathoki, S.; Lamba, J.; Srivastava, P.; Williams, C.; Arriaga, F.; Karthikeyan, K. Impact of land use and tillage practice on soil macropore characteristics inferred from X-ray computed tomography. Catena 2022, 210, 105886. [Google Scholar] [CrossRef]
- Li, J.; Han, Z.; Zhong, S.; Gao, P.; Wei, C. Pore size distribution and pore functional characteristics of soils as affected by rock fragments in the hilly regions of the Sichuan Basin, China. Can. J. Soil Sci. 2021, 101, 74–83. [Google Scholar] [CrossRef]
- Jarvis, N.J. A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. Eur. J. Soil Sci. 2007, 58, 523–546. [Google Scholar] [CrossRef]
- Tang, Y.; Pan, H.; Zhang, T.; Cao, L.; Wang, Y. The Dynamics of Soil Macropores and Hydraulic Conductivity as Influenced by the Fibrous and Tap Root Systems. Agriculture 2024, 14, 1676. [Google Scholar] [CrossRef]
- Beven, K.; Germann, P. Macropores and water flow in soils. Water Resour. Res. 1982, 18, 1311–1325. [Google Scholar] [CrossRef]
- Bao, J.; Wang, K.; Xu, Z. Transmission Characteristics of the Macropore Flow in Vegetated Slope Soils and Its Implication for Slope Stability. Sustainability 2024, 16, 7897. [Google Scholar] [CrossRef]
- Sukul, P.; Lamshöft, M.; Zühlke, S.; Spiteller, M. Sorption and desorption of sulfadiazine in soil and soil-manure systems. Chemosphere 2008, 73, 1344–1350. [Google Scholar] [CrossRef]
- Wehrhan, A.; Kasteel, R.; Simunek, J.; Groeneweg, J.; Vereecken, H. Transport of sulfadiazine in soil columns—Experiments and modelling approaches. J. Contam. Hydrol. 2007, 89, 107–135. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, P.; Sarmah, A.K. Assessing the sorption and leaching behaviour of three sulfonamides in pasture soils through batch and column studies. Sci. Total Environ. 2014, 493, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Casey, F.X.M.; Hakk, H.; Larsen, G.L.; Khan, E. Sorption, Fate, and Mobility of Sulfonamides in Soils. Water Air Soil Pollut. 2010, 218, 49–61. [Google Scholar] [CrossRef]
- Jørgensen, P.R.; Mosthaf, K.; Rolle, M. A Large Undisturbed Column Method to Study Flow and Transport in Macropores and Fractured Media. Groundwater 2019, 57, 951–961. [Google Scholar] [CrossRef]
- Conde-Cid, M.; Fernández-Calviño, D.; Fernández-Sanjurjo, M.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Arias-Estévez, M. Adsorption/desorption and transport of sulfadiazine, sulfachloropyridazine, and sulfamethazine, in acid agricultural soils. Chemosphere 2019, 234, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Lin, H.; Schmidt, J. Quantitative Relationships between Soil Macropore Characteristics and Preferential Flow and Transport. Soil Sci. Soc. Am. J. 2010, 74, 1929–1937. [Google Scholar] [CrossRef]
- Celestino Ladu, J.L.; Zhang, D.R. Modeling atrazine transport in soil columns with HYDRUS-1D. Water Sci. Eng. 2011, 4, 258–269. [Google Scholar] [CrossRef]
- Buttle, J.; Leigh, D. The influence of artificial macropores on water and solute transport in laboratory soil columns. J. Hydrol. 1997, 191, 290–313. [Google Scholar] [CrossRef]
- Koestel, J.K.; Norgaard, T.; Luong, N.M.; Vendelboe, A.L.; Moldrup, P.; Jarvis, N.J.; Lamandé, M.; Iversen, B.V.; de Jonge, L.W. Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale. Water Resour. Res. 2013, 49, 790–807. [Google Scholar] [CrossRef]
- Miranda-Vélez, J.F.; Diamantopoulos, E.; Vogeler, I. Does macropore flow in no-till systems bypass mobile soil nitrogen after harvest? Soil Tillage Res. 2022, 221, 105408. [Google Scholar] [CrossRef]
- Helmke, M.F.; Simpkins, W.W.; Horton, R. Experimental Determination of Effective Diffusion Parameters in the Matrix of Fractured Till. Vadose Zo J. 2004, 3, 1050–1056. [Google Scholar] [CrossRef]
- Forrer, I.; Kasteel, R.; Flury, M.; Flühler, H. Longitudinal and lateral dispersion in an unsaturated field soil. Water Resour. Res. 1999, 35, 3049–3060. [Google Scholar] [CrossRef]
- Sternagel, A.; Loritz, R.; Klaus, J.; Berkowitz, B.; Zehe, E. Simulation of reactive solute transport in the critical zone: A Lagrangian model for transient flow and preferential transport. Hydrol. Earth Syst. Sci. 2021, 25, 1483–1508. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartage, K.H. Bulk Density. In Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods-Agronomy Monograph, 2nd ed.; American Society of Agronomy-Soil Science Society of America: Madison, WI, USA, 1986. [Google Scholar]
- Lamandé, M.; Wildenschild, D.; Berisso, F.E.; Garbout, A.; Marsh, M.; Moldrup, P.; Keller, T.; Hansen, S.B.; de Jonge, L.W.; Schjønning, P. X-ray CT and laboratory measurements on glacial till subsoil cores: Assessment of inherent and compaction-affected soil structure characteristics. Soil Sci. 2013, 178, 359–368. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Anderson, S.H.; Gantzer, C.J.; Garrett, H.E. Agroforestry and Grass Buffer Influence on Macropore Characteristics. Soil Sci. Soc. Am. J. 2006, 70, 1763–1773. [Google Scholar] [CrossRef]
- Yu, K.; Duan, Y.; Zhang, M.; Dong, Y.; Wang, L.; Wang, Y.; Guo, X.; Hu, F. Using micro focus industrial computed tomography to characterize the effects of soil type and soil depth on soil pore characteristics, morphology, and soil compression in Xi’an, China. J Soils Sediments 2020, 20, 1943–1959. [Google Scholar] [CrossRef]
- Dong, Y.; Xiong, D.; Su, Z.; Yang, D.; Zheng, X.; Shi, L.; Poesen, J. Effects of vegetation buffer strips on concentrated flow hydraulics and gully bed erosion based on in situ scouring experiments. Land Degrad. Dev. 2018, 29, 1672–1682. [Google Scholar] [CrossRef]
- van Genuchten, M.T.; Tang, D.H.; Guennelon, R. Some Exact Solutions for Solute Transport Through Soils Containing Large Cylindrical Macropores. Water Resour. Res. 1984, 20, 335–346. [Google Scholar] [CrossRef]






| Depth | (cm−1) | (cm3 cm−3) | (cm3 cm−3) | r < 0.1 µm | 25 > r > 0.1 µm | 125 > r > 25 µm | r > 125 µm |
Macropores
(r > 100 µm, %) | |
|---|---|---|---|---|---|---|---|---|---|
| 0–20 cm | 0.0348 ± 0.0006 | 1.392 ± 0.0673 | 0.4623 ± 0.0132 | 0.2051 ± 0.0524 | 0.225 ± 0.023 | 0.155 ± 0.041 | 0.062 ± 0.019 | 0.027 ± 0.008 | 5.3 ± 0.011 |
| 20–40 cm | 0.0404 ± 0.0019 | 1.4847 ± 0.0324 | 0.4258 ± 0.0019 | 0.2172 ± 0.0622 | 0.223 ± 0.015 | 0.116 ± 0.037 | 0.070 ± 0.017 | 0.019 ± 0.007 | 3.6 ± 0.013 |
| 40–60 cm | 0.0513 ± 0.0055 | 1.2851 ± 0.0907 | 0.3877 ± 0.0134 | 0.1945 ± 0.0379 | 0.224 ± 0.012 | 0.106 ± 0.035 | 0.036 ± 0.015 | 0.027 ± 0.009 | 7.6 ± 0.012 |
| Depth | MP (%) | Connected Pores (%) | Isolated Pores (%) | HD (mm) | CP | MD (mm) | Γ |
|---|---|---|---|---|---|---|---|
| 0–20 cm | 7.631 | 6.309 | 1.322 | 0.183 | 428.58 | 3.152 | 0.545 |
| 20–40 cm | 5.477 | 5.027 | 0.45 | 0.240 | 295.38 | 2.041 | 0.919 |
| 40–60 cm | 8.021 | 7.761 | 0.26 | 0.303 | 262.19 | 2.671 | 0.961 |
| Average | 7.043 | 6.366 | 0.677 | 0.242 | 328.72 | 2.621 | 0.808 |
| Model | Depth | Compound | λ (cm) | θim | FRAC | α | R2 | RMSE | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TR | 0–20 cm | Br− | 73.02 a | 88.67 b | 0.0642 a | 0.0299 b | 0.5 a,b | 0.000029 a | 0.000032 b | 0.98 a | 0.91 b | 0.065 a | 0.141 b |
| SDZ | 32.59 a | 35.23 b | 0.0642 a | 0.0299 b | 0.5 a,b | 0.000149 a | 0.000077 b | 0.90 a | 0.88 b | 0.056 a | 0.106 b | ||
| SMZ | 67.61 a | 71.76 b | 0.0642 a | 0.0299 b | 0.5 a,b | 0.000110 a | 0.002738 b | 0.87 a | 0.94 b | 0.053 a | 0.104 b | ||
| 20–40 cm | Br− | 135.5 a | 151.6 b | 0.0194 a | 0.0662 b | 0.5 a,b | 0.000009 a | 0.000137 b | 0.97 a | 0.94 b | 0.077 a | 0.113 b | |
| SDZ | 13.18 a | 14.87 b | 0.0194 a | 0.0662 b | 0.5 a,b | 0.000274 a | 0.004211 b | 0.93 a | 0.98 b | 0.066 a | 0.042 b | ||
| SMZ | 93.18 a | 96.87 b | 0.0194 a | 0.0662 b | 0.5 a,b | 0.000237 a | 0.000253 b | 0.97 a | 0.97 b | 0.056 a | 0.059 b | ||
| 40–60 cm | Br− | 95.7 a | 106.47 b | 0.0307 a | 0.0432 b | 0.5 a,b | 0.000028 a | 0.000108 b | 0.97 a | 0.94 b | 0.075 a | 0.106 b | |
| SDZ | 23.47 a | 24.59 b | 0.0307 a | 0.0432 b | 0.5 a,b | 0.000106 a | 0.000056 b | 0.99 a | 0.96 b | 0.037 a | 0.084 b | ||
| SMZ | 99.86 a | 107.5 b | 0.0307 a | 0.0432 b | 0.5 a,b | 0.000638 a | 0.000106 b | 0.98 a | 0.91 b | 0.050 a | 0.119 b | ||
| CDE | 0–20 cm | Br− | 48.76 a | 75.4 b | - | - | - | - | - | 0.98 a | 0.91 b | 0.065 a | 0.142 b |
| 20–40 cm | Br− | 132.1 a | 157.6 b | - | - | - | - | - | 0.97 a | 0.93 b | 0.076 a | 0.117 b | |
| 40–60 cm | Br− | 119.1 a | 132.9 b | - | - | - | - | - | 0.97 a | 0.94 b | 0.075 a | 0.108 b | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngabonziza, D.; Liu, C.; Cui, J.; Liu, X.; Sun, Z.; Zheng, Q. Macropore Characteristics and Their Contribution to Sulfonamide Antibiotics Leaching in a Calcareous Farmland Entisol. Sustainability 2025, 17, 9898. https://doi.org/10.3390/su17219898
Ngabonziza D, Liu C, Cui J, Liu X, Sun Z, Zheng Q. Macropore Characteristics and Their Contribution to Sulfonamide Antibiotics Leaching in a Calcareous Farmland Entisol. Sustainability. 2025; 17(21):9898. https://doi.org/10.3390/su17219898
Chicago/Turabian StyleNgabonziza, Didier, Chen Liu, Junfang Cui, Xinyu Liu, Zhixiang Sun, and Qianqian Zheng. 2025. "Macropore Characteristics and Their Contribution to Sulfonamide Antibiotics Leaching in a Calcareous Farmland Entisol" Sustainability 17, no. 21: 9898. https://doi.org/10.3390/su17219898
APA StyleNgabonziza, D., Liu, C., Cui, J., Liu, X., Sun, Z., & Zheng, Q. (2025). Macropore Characteristics and Their Contribution to Sulfonamide Antibiotics Leaching in a Calcareous Farmland Entisol. Sustainability, 17(21), 9898. https://doi.org/10.3390/su17219898

