Water Quality Dynamics in Cyanobacterial Control in Brazilian Cerrado Reservoir
Abstract
1. Introduction
2. Methods
2.1. Study Area
2.2. Monitoring Sites and Frequency of Sampling
2.3. Meteorological Variables
2.4. Physico-Chemical and Biological Variables of Water Quality
2.5. Statistical Analyses
2.6. The Trophic State Index (TSI)
3. Results
3.1. Descriptive Statistics
3.2. Correlation and Multivariate Analysis
3.3. Trophic State Index (TSI)
4. Discussion
4.1. Reservoir Hydrodynamics and Water Quality Characterisation
4.2. Analytical Insights into Reservoir Ecology
4.3. Dynamics of Phytoplankton Populations
4.4. Regional and Morphological Influences
4.5. Trophic State of the Water Body
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rolim, S.B.A.; Lobo, F.L.; Rasera, M.F.F.L.; Rodrigues, T.W.P.; Russell, M.J.; Su, L.; Novo, E.M.L.M. Remote sensing for mapping algal blooms in freshwater lakes: A review. Environ. Sci. Pollut. Res. 2023, 30, 19602–19616. [Google Scholar] [CrossRef]
- Chen, N.; Wang, S.; Zhang, X.; Yang, S. A risk assessment method for remote sensing of cyanobacterial blooms in inland waters. Sci. Total Environ. 2020, 740, 140012. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Otten, T.G. Harmful Cyanobacterial Blooms: Causes, Consequences, and Control. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef]
- Carey, C.C.; Ibelings, B.W.; Hoffmann, E.P.; Hamilton, D.P.; Brookes, J.D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012, 46, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Lins, R.P.M.; Barbosa, L.G.; Minillo, A.; de Ceballos, B.S.O. Cyanobacteria in a eutrophicated reservoir in a semi-arid region in Brazil: Dominance and microcystin events of blooms. Braz. J. Bot. 2016, 39, 905–915. [Google Scholar] [CrossRef]
- Bittencourt-Oliveira, M.C.; Dias, S.N.; Moura, A.N.; Cordeiro-Araújo, M.K.; Dantas, E.W. Seasonal dynamics of cyanobacteria in a eutrophic reservoir (Arcoverde) in a semi-arid region of Brazil. Braz. J. Biol. 2012, 72, 533–544. [Google Scholar] [CrossRef][Green Version]
- SANEAGO. Projeto Básico Ambiental da Barragem e do Reservatório de Regularização e Acumulação do Ribeirão João Leite em Goiânia, Goiás—Brasil; Relatório Técnico; Saneamento de Goiás S.A.: Goiânia, Brazil, 2009. [Google Scholar]
- Ferreira, R.D.; Barbosa, C.C.F.; Novo, E.M.L.M. Assessment of in vivo fluorescence method for chlorophyll-a estimation in optically complex waters (Curuai floodplain, Pará—Brazil). Acta Limnol. Bras. 2012, 24, 373–386. [Google Scholar] [CrossRef]
- Cha, Y.; Park, S.S.; Kim, K.; Byeon, M.; Stow, C.A. Probabilistic prediction of cyanobacteria abundance in a Korean reservoir using a Bayesian Poisson Model. Water Resour. Res. 2014, 50, 7837–7853. [Google Scholar] [CrossRef]
- Mowe, M.A.D.; Mitrovic, S.M.; Lim, R.P.; Furey, A.; Yeo, D.C.J. Tropical cyanobacterial blooms: A review of prevalence, problem taxa, toxins and influencing environmental factors. J. Limnol. 2015, 74, 205–227. [Google Scholar] [CrossRef]
- Carmo, E.J.S. Cianobactérias Planctônicas do Reservatório do Ribeirão João Leite (Goiás) Durante a Fase de Enchimento: Florística e Floração. Master’s Thesis, Universidade Federal de Goiás, Goiânia, Brazil, 2014. [Google Scholar]
- O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 2012, 14, 313–334. [Google Scholar] [CrossRef]
- Burford, M.A.; Johnson, S.A.; Cook, A.J.; Packer, T.V.; Townsley, E.R. Correlations between watershed and reservoir characteristics, and algal blooms in subtropical reservoirs. Water Res. 2007, 41, 4105–4114. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, C.; Lin, Q.; Xiao, W.; Huang, B.; Lu, W.; Chen, J. Modeling of algal blooms: Advances, applications, and prospects. Ocean Coast. Manag. 2024, 255, 107250. [Google Scholar] [CrossRef]
- Noori, R.; Sabahi, M.S.; Karbassi, A.R.; Baghvand, A.; Zadeh, H.T. Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination 2010, 270, 129–136. [Google Scholar] [CrossRef]
- Oliveira, F.H.P.C.; Capela e Ara, A.L.S.; Moreira, C.H.P.; Lira, O.O.; Padilha, M.R.F.; Shinohara, N.K.S. Seasonal changes of water quality in a tropical shallow and eutrophic reservoir in the metropolitan region of Recife (Pernambuco-Brazil). An. Acad. Bras. Cienc. 2014, 86, 1863–1872. [Google Scholar] [CrossRef]
- Davis, T.W.; Berry, D.L.; Boyer, G.L.; Gobler, C.J. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 2009, 8, 715–725. [Google Scholar] [CrossRef]
- Duarte, L.V.; Formiga, K.T.M.; Costa, V.A.F. Comparison of methods for filling daily and monthly rainfall missing data: Statistical models or imputation of satellite retrievals? Water 2022, 14, 3144. [Google Scholar] [CrossRef]
- Duarte, L.V.; Formiga, K.T.M.; Costa, V.A.F. Analysis of the IMERG-GPM precipitation product analysis in Brazilian midwestern basins considering different time and spatial scales. Water 2022, 14, 2472. [Google Scholar] [CrossRef]
- Rice, E.W.; Bridgewater, L.; American Public Health Association (Eds.) Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- CETESB. Guia Nacional de Coleta e Preservação de Amostra. Agua, Sedimento, Comunidade Aquáticas e Efluentes Liquidos; Companhia Estadual de Tecnologia de Saneamento Ambiental do Estado de São Paulo: São Paulo, Brazil, 2011. [Google Scholar]
- Utermöhl, H. Zur vervollkommnung der quantitativen phytoplankton-methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Int. Ver. Theor. Angew. Limnol. Mitteilungen 1958, 9, 1–38. [Google Scholar] [CrossRef]
- Bicudo, C.E.M.; Menezes, M. Gêneros de Algas de Águas Continentais do Brasil: Chave para Identificação e Descrições; RiMa Editora: São Carlos, Brazil, 2017. [Google Scholar]
- Tucci, A.; Sant’Anna, C.L.; Azevedo, M.T.P.; Melcher, S.S.; Werner, V.R.; Malone, C.F.S.; Rosini, E.F.; Gama, W.A.; Hentschke, G.S.; Osti, J.A.S.; et al. Atlas de Cianobactérias e Microalgas de Águas Continentais Brasileiras; Instituto de Botânica: São Paulo, Brazil, 2012. [Google Scholar]
- Komárek, J.; Anagnostidis, K. Cyanoprokaryota, 1: Chroococcales. In Süßwasserflora von Mitteleuropa; Ettl, H., Gärtner, G., Heynig, H., Mollenhauer, D., Eds.; Gustav Fischer: Stuttgart, Germany, 1999; Volume 19, pp. 1–548. [Google Scholar]
- Komárek, J.; Anagnostidis, K. Cyanoprokaryota, 2: Oscillatoriales. In Süßwasserflora von Mitteleuropa; Büdel, B., Krienitz, L., Gärtner, G., Schagerl, M., Eds.; Elsevier Spektrum Akademischer Verlag: München, Germany, 2005; Volume 19, pp. 1–759. [Google Scholar]
- Oliveira, F.A.D.; Pereira, T.S.R.; Soares, A.K.; Formiga, K.T.M. Using hydrodynamic model for flow calculation from level measurements. Rev. Bras. Recur. Hídricos 2016, 21, 707–718. [Google Scholar]
- Zhou, F.; Liu, Y.; Guo, H. Application of multivariate statistical methods to water quality assessment of the watercourses in northwestern New Territories, Hong Kong. Environ. Monit. Assess. 2007, 132, 1–13. [Google Scholar] [CrossRef]
- Da Silva, E.P.; Filho, N.R.A.; Pereira, J.; Formiga, K.T.M. Temporal variation and risk assessment of heavy metals and nutrients from water and sediment in a stormwater pond, Brazil. Water Supply 2023, 23, 206–221. [Google Scholar] [CrossRef]
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef]
- Lamparelli, M.C. Graus de Trofia em Corpos D’água do Estado de São Paulo: Avaliação dos Métodos de Monitoramento. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2004. [Google Scholar]
- OECD. The OECD Cooperative Programme on Eutrophication; Canadian Contribution; Janus, L.L., Vollenweider, R.A., Eds.; Environment Canada, National Water Research Institute, Inland Waters Directorate: Ottawa, ON, Canada, 1981. [Google Scholar]
- Brasil. Conselho Nacional do Meio Ambiente (CONAMA). Resolução CONAMA N° 357, de 17 de Março de 2005. Dispõe Sobre a Classificação dos Corpos de Água e Diretrizes Ambientais para o seu Enquadramento, bem como Estabelece as Condições e Padrões de Lançamento de Efluentes. Diário Oficial da União, Brasília, DF, 18 March 2005. Available online: https://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=450 (accessed on 7 July 2025).
- Brasil. Ministério da Saúde. Portaria GM/MS Nº 888, de 4 de Maio de 2021. Altera o Anexo XX da Portaria de Consolidação GM/MS nº 5, de 28 de Setembro de 2017, para Dispor Sobre os Procedimentos de Controle e de Vigilância da Qualidade da Água para Consumo Humano e seu Padrão de Potabilidade. Diário Oficial da União, Brasília, DF, 7 May 2021. Available online: https://www.in.gov.br/en/web/dou/-/portaria-gm/ms-n-888-de-4-de-maio-de-2021-318461562 (accessed on 7 July 2025).
- Fernandes, V.O.; Cavati, B.; Oliveira, L.B.; Souza, B.D. Ecologia de cianobactérias: Fatores promotores e consequências das florações. Oecol. Bras. 2009, 13, 247–258. [Google Scholar] [CrossRef]
- Buzeli, G.M.; Cunha-Santino, M.B. Análise e diagnóstico da qualidade da água e estado trófico do reservatório de Barra Bonita, SP. Ambi-Água 2013, 8, 186–205. [Google Scholar]
- Shi, J.; Wang, L.; Yang, Y.; Huang, T. A case study of thermal and chemical stratification in a drinking water reservoir. Sci. Total Environ. 2022, 848, 157697. [Google Scholar] [CrossRef]
- Stockwell, J.D.; Doubek, J.P.; Adrian, R.; Anneville, O.; Carey, C.C.; Carvalho, L.; Wilson, H.L. Storm impacts on phytoplankton community dynamics in lakes. Glob. Change Biol. 2020, 26, 2756–2784. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, Y.; Han, R.; Chen, D.; Ma, H.; Han, X.; Shi, C. Algal Decomposition Accelerates Denitrification as Evidenced by the High-Resolution Distribution of Nitrogen Fractions in the Sediment-Water Interface of Eutrophic Lakes. Water 2024, 16, 341. [Google Scholar] [CrossRef]
- Bellucci, M.; Ofiţeru, I.D.; Graham, D.W.; Head, I.M.; Curtis, T.P. Low-dissolved-oxygen nitrifying systems exploit ammonia-oxidizing bacteria with unusually high yields. Appl. Environ. Microbiol. 2011, 77, 7787–7796. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yang, B.; Huang, T.; Si, F.; Gao, Y.; Zhao, L. Hypolimnetic anoxia and sediment oxygen demand during stratification in a drinking water reservoir. J. Soils Sediments 2021, 21, 3380–3391. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, X.; Sun, B.; Liu, X. Oxygen evolution and its drivers in a stratified reservoir: A supply-side perspective for informing hypoxia alleviation strategies. Water Res. 2024, 257, 121694. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Gan, R.; Li, Y.; Chen, W.; Ma, D.; Chen, J.; Luo, H. Effects of anaerobic oxidation of methane (AOM) driven by iron and manganese oxides on methane emissions in constructed wetlands and underlying mechanisms. Chem. Eng. J. 2024, 495, 153539. [Google Scholar] [CrossRef]
- Robbins, L.J.; Fakhraee, M.; Smith, A.J.B.; Swanner, E.D.; Peacock, C.L.; Lyons, T.W. Manganese oxides, Earth surface oxygenation, and the rise of oxygenic photosynthesis. Earth-Sci. Rev. 2023, 239, 104368. [Google Scholar] [CrossRef]
- Adloff, C.T.; Bem, C.C.; Reichert, G.; Azevedo, J.C.R. Análise da comunidade fitoplanctônica com ênfase em cianobactérias em quatro reservatórios em sistema de cascata do rio Iguaçu, Paraná, Brasil. Rev. Bras. Recur. Hídricos 2018, 23, e6. [Google Scholar]
- Cunha, D.G.F.; Calijuri, M.C. Variação sazonal dos grupos funcionais fitoplanctônicos em braços de um reservatório tropical de usos múltiplos no estado de São Paulo (Brasil). Acta Bot. Bras. 2011, 25, 822–831. [Google Scholar] [CrossRef]
- Bellém, F.; Nunes, S.; Morais, M. Toxicidade a Cianobactérias: Impacte Potencial na Saúde Pública em populações de Portugal e Brasil. In Proceedings of the XIV Encontro da Rede Luso-Brasileira de Estudos Ambientais, Recife, Brazil, 12–16 September 2012. [Google Scholar]
- Malheiros, C.H.; Hardoim, E.L.; Lima, Z.M.; Amorim, R.S.S. Qualidade da água de uma represa localizada em área agrícola (Campo Verde, MT, Brasil). Ambi-Água 2012, 7, 245–262. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Blooms like it hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Tundisi, J.G.; Tundisi, T.M. Limnologia; Oficina de Textos: São Paulo, Brazil, 2008. [Google Scholar]
- Song, Y.L.; Wang, L.; Chang, A.; Fei, S.D.; Fang, J.F.; Liang, D.; Yan, C.J. Interannual monitoring of water environment and spatiotemporal dynamics of phytoplankton community and blooming risk in a tropical water source reservoir, China. Appl. Ecol. Environ. Res. 2024, 22, 6017–6043. [Google Scholar] [CrossRef]
- Figueredo, C.C.; Pinto-Coelho, R.M.; Lopes, A.M.M.B.; Lima, P.H.O.; Gücker, B.; Giani, A. From Intermittent to Persistent Cyanobacterial Blooms, Identifying the Main Drivers in an Urban Tropical Reservoir. J. Limnol. 2016, 75, 540–550. [Google Scholar] [CrossRef]
- Jardim, B.F.M. Variação dos Parâmetros Físicos e Químicos das Águas Superficiais da Bacia do Rio das Velhas-MG e sua Associação com as Florações de Cianobactérias. Master’s Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2011. [Google Scholar]
- Graham, L.E.; Graham, J.M.; Wilcox, L.W.; Cook, M.E. Algae, 3rd ed.; LJLM Press: Dubuque, IA, USA, 2016. [Google Scholar]
- Li, Y.; Zhou, Q.; Zhang, Y.; Li, J.; Shi, K. Research trends in the remote sensing of phytoplankton blooms: Results from bibliometrics. Remote Sens. 2021, 13, 4414. [Google Scholar] [CrossRef]








| Variance | Axis 1 | Axis 2 |
|---|---|---|
| 28.0% | 9.9% | |
| ph | 0.3295 | −0.2285 |
| DO | 0.3749 | −0.1314 |
| turb | −0.1576 | −0.3888 |
| EC | −0.3474 | 0.1034 |
| temperature | 0.0957 | −0.0977 |
| phosphate | −0.0135 | −0.2267 |
| nitrate | 0.1064 | 0.0665 |
| nitrite | −0.0378 | 0.2807 |
| ammonia | −0.3956 | 0.1823 |
| TOC | 0.0429 | −0.5733 |
| iron | −0.3962 | −0.0820 |
| manganese | −0.3802 | −0.1126 |
| sulphate | −0.2427 | −0.1645 |
| chlorophyll-a | −0.0107 | 0.2305 |
| algae | 0.1695 | 0.3710 |
| cyanophycea | 0.1887 | 0.1595 |
| V1 | V2 | V3 | |
|---|---|---|---|
| Correl | 0.492 | 0.299 | 0.258 |
| Stat | 0.645 | 0.850 | 0.934 |
| Approx | 4.543 | 2.647 | 2.430 |
| DF1 | 39.000 | 24.000 | 11.000 |
| DF2 | 1108.242 | 750.000 | 376.000 |
| p-value | 0.0000 | 0.0000 | 0.0062 |
| Canonical Coefficients | Canonical Loadings | ||||||
|---|---|---|---|---|---|---|---|
| V1 | V2 | V3 | V1 | V2 | V3 | ||
| Physico-Chemical | ph | 0.434 | 0.100 | 0.705 | 0.620 | 0.412 | 0.126 |
| DO | 0.108 | 0.278 | −0.064 | 0.749 | 0.615 | −0.081 | |
| turb | −0.003 | −0.007 | 0.008 | −0.293 | 0.173 | −0.160 | |
| EC | −0.003 | −0.002 | −0.016 | −0.534 | −0.330 | 0.111 | |
| temperature | 0.238 | −0.307 | −0.063 | 0.775 | 0.122 | −0.009 | |
| phosphate | −0.531 | −12.683 | −38.083 | −0.173 | −0.042 | −0.519 | |
| nitrate | −0.912 | 0.412 | −3.515 | 0.165 | 0.060 | −0.536 | |
| nitrite | −0.404 | 4.861 | −2.508 | 0.065 | −0.031 | −0.234 | |
| ammonia | 0.642 | −2.018 | 1.923 | −0.537 | −0.432 | 0.005 | |
| TOC | −0.460 | 0.449 | 0.472 | −0.310 | 0.402 | 0.270 | |
| iron | −0.270 | 0.539 | −0.250 | −0.597 | −0.016 | −0.208 | |
| manganese | 1.025 | −0.892 | −2.031 | −0.580 | −0.155 | −0.249 | |
| sulphate | −0.104 | 0.114 | −0.006 | −0.458 | 0.176 | −0.073 | |
| Bio | chlorophyll-a | −0.005 | −0.209 | 0.172 | 0.021 | −0.727 | 0.686 |
| algae | 0.000 | 0.000 | 0.000 | 0.905 | −0.283 | −0.318 | |
| cyanophycea | 0.000 | 0.000 | 0.000 | 0.682 | 0.455 | 0.573 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado, A.A.; Santos, K.A.d.; Reis, G.d.C.d.; Basso, R.E.; Formiga, K.T.M. Water Quality Dynamics in Cyanobacterial Control in Brazilian Cerrado Reservoir. Sustainability 2025, 17, 9537. https://doi.org/10.3390/su17219537
Salgado AA, Santos KAd, Reis GdCd, Basso RE, Formiga KTM. Water Quality Dynamics in Cyanobacterial Control in Brazilian Cerrado Reservoir. Sustainability. 2025; 17(21):9537. https://doi.org/10.3390/su17219537
Chicago/Turabian StyleSalgado, Aline Arvelos, Kamila Almeidas dos Santos, Guilherme da Cruz dos Reis, Raviel Eurico Basso, and Klebber T. M. Formiga. 2025. "Water Quality Dynamics in Cyanobacterial Control in Brazilian Cerrado Reservoir" Sustainability 17, no. 21: 9537. https://doi.org/10.3390/su17219537
APA StyleSalgado, A. A., Santos, K. A. d., Reis, G. d. C. d., Basso, R. E., & Formiga, K. T. M. (2025). Water Quality Dynamics in Cyanobacterial Control in Brazilian Cerrado Reservoir. Sustainability, 17(21), 9537. https://doi.org/10.3390/su17219537

