Exploring the Relationship Between Green Finance and Carbon Productivity: The Mediating Role of Technological Progress Bias
Abstract
1. Introduction
2. Mechanism Analysis and Hypothesis
2.1. Green Finance and Carbon Productivity
2.2. Mediating Role of Technological Progress Bias
3. Data Sources and Modeling
3.1. Data Sources and Variable Definitions
3.1.1. Data Sources
3.1.2. Definition of Variables
3.2. Spatial Measurement Models
3.2.1. Spatial Auto-Correlation Test
3.2.2. Spatial Durbin Model
3.3. Mediated Effects Model
4. Empirical Results and Analysis
4.1. Empirical Analysis and Testing of Spatial Econometric Models
4.1.1. Empirical Analysis of Spatial Econometric Models
4.1.2. Endogeneity Test
4.1.3. Robustness Tests
4.2. Analysis of Inter-Mediation Effects
4.2.1. Analysis of Regional Heterogeneity
4.2.2. Analysis of the Mediating Effect of Agglomeration Level Heterogeneity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J. Research on the development of green finance in China under the perspective of low-carbon economy. Financ. Account. Newsl. 2019, 29, 44–48. [Google Scholar] [CrossRef]
- Saeed Meo, M.; Karim, M.Z.A. The role of green finance in reducing CO2 emissions: An empirical analysis. Borsa Istanb. Rev. 2022, 22, 169–178. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, W.; Wang, L.; Wu, J. Research on carbon emission reduction effect of green financial development in China—Taking green credit and green venture capital as an example. Financ. Forum 2020, 25, 39–48. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X. Study on the Carbon Productivity Enhancement Effect of Green Finance under the “Dual Carbon” Goal. Natl. Circ. Econ. 2023, 22, 185–188. [Google Scholar] [CrossRef]
- Yu, D. Green technology cannot be separated from the effective support of green finance. People’s Forum 2018, 18, 86–87. [Google Scholar]
- He, L.; Liang, X.; Yang, X.; Zhong, Z. Can green credit promote technological innovation of environmental protection enterprises. Res. Financ. Econ. 2019, 34, 109–121. [Google Scholar]
- Zhao, N. Does green credit promote regional green technology innovation?—Based on regional green patent data. Econ. Issue 2021, 6, 33–39. [Google Scholar] [CrossRef]
- Galeotti, M.; Buonanno, P.; Carraro, C. Endogenous Induced Technical Change and the Costs of Kyoto. SSRN Electron. J. 2005. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G. Analysis of carbon emission reduction effect of heterogeneous technological progress. Sci. Sci. Technol. Manag. 2015, 36, 54–61. [Google Scholar]
- Jin, W.; Wang, Y.; Yan, Y.; Zhou, H.; Xu, L.; Zhang, Y.; Xu, Y.; Zhang, Y. Digital Economy, Green Finance, and Carbon Emissions: Evidence from China. Sustainability 2025, 17, 5625. [Google Scholar] [CrossRef]
- Li, Z.; Song, Z. Green finance reform and innovation pilot zones: A catalyst for green development efficiency in Chinese cities. J. Clean. Prod. 2025, 525, 146576. [Google Scholar] [CrossRef]
- Tang, X.; Wang, Q.; Noor, S.; Nazir, R.; Nasrullah, M.J.; Hussain, P.; Larik, S.A. Exploring the Impact of Green Finance and Green Innovation on Resource Efficiency: The Mediating Role of Market Regulations and Environmental Regulations. Sustainability 2024, 16, 8047. [Google Scholar] [CrossRef]
- Wang, D.; Yu, Z.; Liu, H.; Cai, X.; Zhang, Z. Impact of capital and labour based technological progress on carbon productivity. J. Clean. Prod. 2024, 467, 142827. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, N.; Wei, C. Spatial spillover effects of green technology innovation and carbon productivity—A study on the moderating role based on government support. Manag. Mod. 2021, 41, 87–92. [Google Scholar] [CrossRef]
- Nie, X.; Jiang, P.; Zheng, X.; Wu, Q. Research on digital finance and regional technological innovation level. Financ. Res. 2021, 3, 132–150. [Google Scholar]
- Fu, J.; Liu, Y. Mechanism analysis of green finance to promote high-quality economic development in Guangdong, Hong Kong and Macao Bay Area. Environ. Prot. 2019, 47, 36–38. [Google Scholar] [CrossRef]
- Zhang, Y.; Dou, R.; Bai, Y. Measurement of the construction level of China’s green, low-carbon and recycling development economic system. Res. Quant. Econ. Tech. Econ. 2020, 37, 83–102. [Google Scholar] [CrossRef]
- Yang, X.; Qiao, C. Spatial spillover effects of agricultural industrial agglomeration on agricultural carbon productivity—Based on the moderating role of fiscal decentralization. China Popul.-Resour. Environ. 2023, 33, 92–101. [Google Scholar]
- Acemoglu, D. Directed technical change. Rev. Econ. Stud. 2002, 69, 781–809. [Google Scholar] [CrossRef]
- Dai, T.; Xu, X. The direction of technological progress in China. World Econ. 2010, 33, 54–70. [Google Scholar] [CrossRef]
- David, P.A.; Klundert, T. Biased Efficiency Growth and Capital Labor Substitution in the U.S., 1899–1960. Am. Econ. Rev. 1965, 55, 357–394. [Google Scholar]
- Klump, R.; Mcadam, P.; Willman, A. Factor substitution and factor-augmenting technical progress in the United States: A normalized supply-side system approach. Rev. Econ. Stat. 2007, 89, 183–192. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B (Methodol.) 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Guo, J.; Guo, C.H.; Ling, Y. Estimating the rebound effect in Chinaindustrial sector energy consumption. J. Quant. Tech. Econ. 2010, 11, 114–126. [Google Scholar]
- León-Ledesma, M.A.; Mcadam, P.; Willman, A. Identifying the elasticity of substitution with biased technical change. Am. Econ. Rev. 2010, 100, 1330–1357. [Google Scholar] [CrossRef]
- Wen, Z.; Ye, B. Mediation effects analysis: Methodology and model development. Adv. Psychol. Sci. 2014, 22, 731–745. [Google Scholar] [CrossRef]
- Xu, L. The impact of green credit on industrial carbon productivity—An empirical analysis based on spatial Durbin model. Qinghai Financ. 2022, 10, 19–27. [Google Scholar]
- He, Y.; Lin, B. Research on the impact of heterogeneous labor agglomeration on regional carbon emissions. J. Popul. 2022, 44, 39–56. [Google Scholar] [CrossRef]
- Yang, W.; Gao, H.; Yang, Y. Analysis of Influencing Factors of Embodied Carbon in China’s Export Trade in the Background of “Carbon Peak” and “Carbon Neutrality”. “Carbon Peak” and “Carbon Neutrality”. Sustainability 2022, 14, 3308. [Google Scholar] [CrossRef]
Variables | Mean | SD | Min | Max | |
---|---|---|---|---|---|
Carbon productivity | CP | 0.2705 | 0.1724 | 0.0249 | 1.2240 |
Green finance | GF | −0.5170 | 0.0935 | −0.7137 | −0.3294 |
Capital–labor technological progress bias | Bias_LK | −0.1592 | 0.8720 | −2.0399 | 13.3741 |
Energy-enhanced technological progress bias | Bias_E | −0.0064 | 0.0416 | −0.2335 | 0.1914 |
Energy structure | ES | 8.2589 | 1.5305 | 0.8604 | 9.9979 |
Industrial agglomeration | IA | 0.9286 | 0.2236 | 0.3242 | 1.3573 |
Environmental regulation | ER | 2.0156 | 1.9072 | 0.0009 | 9.6841 |
Labor skills | LS | 6.9831 | 6.5480 | 0.7825 | 43.8000 |
Trade level | TL | 0.1077 | 0.1849 | 0.0003 | 1.0916 |
Economic structure | ESO | 1.3497 | 0.8762 | 0.5342 | 7.1810 |
Year | Moran’s Index | Statistical Value | t-Value |
---|---|---|---|
2006 | 0.0487 *** | 2.4772 | 0.0066 |
2007 | 0.0498 *** | 2.5101 | 0.0060 |
2008 | 0.0896 *** | 3.6946 | 0.0001 |
2009 | 0.0940 *** | 3.8275 | 0.0001 |
2010 | 0.0652 *** | 2.9685 | 0.0015 |
2011 | 0.0654 *** | 2.9748 | 0.0015 |
2012 | 0.0691 *** | 3.0855 | 0.0010 |
2013 | 0.0804 *** | 3.4210 | 0.0003 |
2014 | 0.0818 *** | 3.4633 | 0.0003 |
2015 | 0.0903 *** | 3.7150 | 0.0001 |
2016 | 0.0855 *** | 3.5745 | 0.0002 |
2017 | 0.0757 *** | 3.2826 | 0.0005 |
2018 | 0.0701 *** | 3.1153 | 0.0009 |
2019 | 0.0719 *** | 3.1670 | 0.0008 |
2020 | 0.0662 *** | 2.9979 | 0.0014 |
Methods | Hausman (Fixed Time) | Hausman (Fixed Space) | LM-Lag | Robust LM-Lag | LM-Error | Robust LM-Error |
---|---|---|---|---|---|---|
statistical value | 449.6372 *** | 77.3860 *** | 38.8794 *** | 9.5382 *** | 40.6183 *** | 11.2771 *** |
P-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Variant | Direct Effect | Indirect Effect | Aggregate Effect |
---|---|---|---|
GF | 0.0748 (0.4689) | 1.9204 ** (2.4777) | 1.9952 ** (2.3732) |
ES | 0.0282 *** (7.1979) | −0.0014 (−0.1272) | 0.0268 ** (2.4691) |
IA | −0.1871 *** (−5.5159) | −0.2175 ** (−2.5081) | −0.4046 *** (−4.7629) |
ER | −0.0123 *** (−3.1853) | −0.0044 (−0.3418) | −0.0168 (−1.2367) |
LS | 0.0997 (0.6816) | −0.4471 (−1.5532) | −0.3474 (−1.0215) |
TL | 0.0559 (1.6179) | 0.1006 (0.8035) | 0.1566 (1.1301) |
ESO | −0.0196 ** (−2.0969) | −0.0237 (−1.0156) | −0.0434 ** (−1.8237) |
R2 | 0.8273 | ||
log-L | 551.0004 | ||
size | 450 |
Variant | Direct Effect | Indirect Effect | Aggregate Effect | Direct Effect | Indirect Effect | Aggregate Effect |
---|---|---|---|---|---|---|
GF | 0.0158 (0.1023) | 92.6472 (0.6705) | 92.6630 (0.6706) | 0.2732 (0.8817) | 6.3678 (1.0076) | 6.6411 (1.0061) |
ES | 0.0282 ** (8.0777) | 1.5735 (0.9267) | 1.6022 (0.9432) | 0.0285 *** (7.3776) | −0.0844 (−0.9821) | −0.0558 (−0.6415) |
IA | −0.2288 *** (−7.8504) | −17.1823 (−1.2285) | −17.4112 (−1.2444) | −0.2177 *** (−6.8220) | 0.2327 (0.3180) | 0.0150 (0.0205) |
ER | −0.0135 *** (−3.9072) | −0.2726 (−0.1530) | −0.2861 (−0.1605) | −0.0177 *** (−3.8318) | −0.1878 * (−1.8004) | −0.2056 * (−1.9272) |
LS | 0.0184 (0.1293) | −1.3248 (−0.0321) | −1.3064 (−0.0316) | 0.1070 (0.5696) | −15.1970 *** (−3.3738) | −15.0899 *** (−3.2774) |
TL | 0.0504 (1.4812) | −10.8253 (−0.6563) | −10.7749 (−0.6529) | 0.0946 ** (2.2403) | 1.2525 (1.4466) | 1.3472 (1.5140) |
ESO | −0.0248 *** (−2.8027) | −4.5241 (−0.9617) | −4.5489 (−0.9666) | −0.0240 ** (−2.5656) | 0.0269 (0.1292) | 0.0028 (0.0138) |
R2 | 0.2906 | |||||
log-L | 542.0702 | |||||
size | 450 |
Variant | Bias_LK | Bias_E | CP |
---|---|---|---|
GF | −0.0302 * (−1.67) | −0.1156 ** (−1.91) | 0.2573 *** (11.43) |
Bias_LK | 0.1581 *** (2.70) | ||
Bias_E | 0.0416 ** (2.38) | ||
con_s | −0.5880 *** (−81.05) | −0.5882 *** (−81.16) | |
R2 | 0.2305 | 0.2320 | |
control variable | Yes | ||
size | 450 | 450 | 450 |
Region | East | Central | West | Northeast | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bias_LK | Bias_E | CP | Bias_LK | Bias_E | CP | Bias_LK | Bias_E | CP | Bias_LK | Bias_E | CP | |
GF | −0.1219 *** (−2.74) | −0.2726 *** (−3.85) | 0.3577 *** (6.41) | −0.0814 *** (−0.90) | −0.4434 ** (−2.4) | 0.3621 *** (7.91) | −0.0193 (−1.22) | −0.1210 * (−1.75) | 0.2784 *** (8.67) | 0.2041 (1.13) | −0.3458 * (−15.66) | 0.5378 *** (5.26) |
Bias_LK | 0.9269 *** (9.19) | 0.0408 (0.76) | 0.1980 (1.25) | 0.1643 * (1.91) | ||||||||
Bias_E | 0.5076 *** (8.20) | −0.0357 (−1.39) | 0.0834 ** (2.32) | 0.7399 *** (8.84) | ||||||||
con_s | −0.5942 *** (−44.26) | −0.5921 *** (−48.71) | −0.5761 *** (−48.22) | −0.6129 *** (−40.42) | −0.6128 *** (−41.59) | −0.6121 *** (−40.48) | −0.6220 *** (−48.88) | −0.6235 *** (−49.01) | −0.6207 *** (−48.89) | −0.6524 *** (−20.44) | −0.6148 *** (−15.66) | −0.6660 *** (−22.48) |
R2 | 0.2555 | 0.2890 | 0.4212 | 0.4519 | 0.3221 | 0.3285 | 0.4094 | 0.4403 | ||||
control variable | Yes | |||||||||||
size | 150 | 150 | 150 | 90 | 90 | 90 | 165 | 165 | 165 | 45 | 45 | 45 |
Provincial Classification | ||
---|---|---|
High-high agglomeration area | (1) | Inner Mongolia, Ningxia, Shanxi, Liaoning, Hebei |
(2) | Xinjiang, Qinghai | |
Middle-middle agglomeration area | (3) | Gansu, Shanxi, Hubei, Anhui, Jiangxi, Hunan, Guizhou, Yunnan, Guangxi, Shandong |
(4) | Heilongjiang, Jilin | |
Low-low agglomeration area | (5) | Sichuan, Chongqing |
(6) | Henan, Jiangsu, Zhejiang, Shanghai, Fujian, Guangdong, Hainan |
High-High Agglomeration Area | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | |||||||||||||||||
Bias_LK | Bias_E | CP | Bias_LK | Bias_E | CP | |||||||||||||
GF | −0.1933 * (−1.94) | 0.4012 *** (2.71) | 0.3104 *** (5.86) | −0.0004 (−0.02) | 0.3949 ** (2.6) | 0.8003 *** (10.66) | ||||||||||||
Bias_LK | −0.0632 (−1.04) | −0.2350 (−0.47) | ||||||||||||||||
Bias_E | 0.0902 ** (2.25) | 0.3589 *** (4.22) | ||||||||||||||||
con_s | −0.6644 *** (−26.29) | −0.5921 *** (−48.71) | −0.6659 *** (−25.87) | −0.8277 *** (−28.44) | −0.1566 *** (−4.84) | −0.8277 *** (−28.97) | ||||||||||||
R2 | 0.3538 | 0.3830 | 0.8023 | 0.8418 | ||||||||||||||
control variable | Yes | |||||||||||||||||
size | 75 | 75 | 75 | 30 | 30 | 30 | ||||||||||||
Middle-middle agglomeration area | Low-low agglomeration area | |||||||||||||||||
(3) | (4) | (5) | (6) | |||||||||||||||
Bias_LK | Bias_E | CP | Bias_LK | Bias_E | CP | Bias_LK | Bias_E | CP | Bias_LK | Bias_E | CP | |||||||
GF | −0.0341 ** (−2.23) | −0.3560 *** (−3.82) | 0.3639 *** (10.76) | 0.4166 *** (1.93) | 0.2934 ** (2.46) | 0.5074 *** (8.19) | 0.1514 (1.50) | −0.0917 ** (−2.18) | 0.8918 *** (12.81) | −0.0234 (−0.47) | 0.0421 (−15.66) | 0.9337 *** (11.25) | ||||||
Bias_LK | 0.4118 ** (2.30) | 0.1414 ** (2.73) | −0.0361 (−0.28) | −0.0564 (−0.34) | ||||||||||||||
Bias_E | 0.1298 *** (4.55) | 0.2424 ** (2.69) | −0.1646 (−0.56) | −0.0306 (−0.39) | ||||||||||||||
con_s | −0.6192 *** (−55.08) | −0.6301 *** (−55.16) | −0.6160 *** (−54.52) | −0.7293 *** (−20.43) | −0.7205 *** (−20.89) | −0.7670 *** (−24.50) | −0.7034 *** (−44.45) | −0.7025 *** (−46.32) | −0.7065 *** (−44.07) | −0.6490 *** (−47.53) | −0.6486 *** (−47.56) | −0.0146 (−0.54) | ||||||
R2 | 0.4575 | 0.4898 | 0.7413 | 0.7593 | 0.8655 | 0.8761 | 0.5525 | 0.5522 | ||||||||||
control variable | Yes | |||||||||||||||||
size | 150 | 150 | 150 | 30 | 30 | 30 | 30 | 30 | 30 | 105 | 105 | 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Yu, Z.; Liu, H.; Cai, X.; Zhang, Z. Exploring the Relationship Between Green Finance and Carbon Productivity: The Mediating Role of Technological Progress Bias. Sustainability 2025, 17, 8725. https://doi.org/10.3390/su17198725
Wang D, Yu Z, Liu H, Cai X, Zhang Z. Exploring the Relationship Between Green Finance and Carbon Productivity: The Mediating Role of Technological Progress Bias. Sustainability. 2025; 17(19):8725. https://doi.org/10.3390/su17198725
Chicago/Turabian StyleWang, Dianwu, Zina Yu, Haiying Liu, Xianzhe Cai, and Zhiqun Zhang. 2025. "Exploring the Relationship Between Green Finance and Carbon Productivity: The Mediating Role of Technological Progress Bias" Sustainability 17, no. 19: 8725. https://doi.org/10.3390/su17198725
APA StyleWang, D., Yu, Z., Liu, H., Cai, X., & Zhang, Z. (2025). Exploring the Relationship Between Green Finance and Carbon Productivity: The Mediating Role of Technological Progress Bias. Sustainability, 17(19), 8725. https://doi.org/10.3390/su17198725