Evaluation of Long-Term Environmental Impact and Radiological Risks at a Former Thorium and Rare Earth Site in North-Eastern Kazakhstan
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
- 49°57′33.3″ N, 82°35′33.6″ E;
- 49°57′32.9″ N, 82°35′34.0″ E;
- 49°57′32.7″ N, 82°35′ 32.0″ E;
- 49°57′32.5″ N, 82°35′32.8″ E.
2.2. Pedestrian Gamma Surveys
2.3. Radioactivity Measurements
- A is the net peak area,
- M is sample mass,
- ε is detector efficiency,
- I is branching factor,
- T is measurement live-time,
- Kc and Kw are factors for decay and corrections, respectively.
2.4. Calculation of Radiological Hazards
3. Results and Discussion
3.1. Gamma Radiation Dose
3.2. Radioactivity of the Analysed Area
3.2.1. Gross Alpha/Gross Beta
3.2.2. Radioactivity Distribution
Radioactivity Measurements for 0–20 cm | ||||
---|---|---|---|---|
Radionuclide | Ra-226 | Th-232 | K-40 | |
Concentration in Bq/kg | Average | 42.9 | 184 | 537 |
Median | 39 | 172 | 545 | |
Minimum | 23 | 55 | 445 | |
Maximum | 75 | 450 | 616 | |
Skewness | 0.62 | 0.88 | −0.16 | |
Kurtosis | −0.11 | 0.89 | −1.08 | |
Coefficient of variation | 31.9 | 50.8 | 9.09 |
3.3. Radiological Hazard Analysis
Location | Raeq (Bq/kg) | ADR (nGy/h) | AEDE (mSv/y−1) | AGDE (μSv/y) | ELCR × 10−3 | Region, Country | Ref. |
---|---|---|---|---|---|---|---|
Granite area | 121–624 | 57.6–280 | 70.7–344 | ns | ns | Xiazhuang, China | [45] |
Gold mine | 76–104 (control soil area) 1668–2812 (tailing no 3) | 37.5–49.1 (control) 203.9–1297.3 (tailing no 3) | 0.1–1.6 | ns | ns | Gauteng Province, South Africa | [46] |
Uranium-rich area | ns | 52.7–1722 | ns | 0.06–2.14 | 0.21–7.49 | Siwalik region, India | [47] |
Lomonosovov diamond deposit | 17–198 | 9–94 | 0.01–0.12 | 65–675 | 0.15–1.62 | Arkhangelsk, Russia | [42] |
Abandoned U mine | 160–1746 (for soil, for rhizosphere up to 9494) | 78–856 (for soil, for rhizosphere up to 4 811) | 0.095–1.05 (27.0 for rhizosphere sample) | ns | 0.38–4.19 (10.6 for rhizosphere sample) | Salamanca, Spain | [48] |
Rare earth element mine | ns | 1597–25,057 | 1.96–30.7 | ns | 0.008–0.124 | Lao Cai, Vietnam | [41] |
Tin tailing | 0.6–20.9 (soil) 3.2–17.0 (tailing) | 1.7–8.9 × 103 (soil) 1.2–7.2 × 103 (tailing) | ns | ns | 1.2–42.0 (soil) 5.9–34.0 (tailing) | Perak, Malaysia | [49] |
Pb–Zn deposit | 78.9–225 | 36.8–108 | 0.045–0.133 | 256–770 | 0.158–0.463 | Yunnan, China | [50] |
Former REE processing site | 141–766 (at 0–20 cm) 127–4064 (at 40–60 cm) | 65–332 (at 0–20 cm) 59–1737 (at 40–60 cm) | 0.08–0.41 (at 0–20 cm) 0.07–2.13 (at 40–60 cm) | 459–2306 (at 0–20 cm) 421–11,994 (at 40–60 cm) | 0.32–1.63 (at 0–20 cm) 0.29–7.39 (at 40–60 cm) | Kazakhstan | This study |
<370 | 59.0 | 0.07 | 300 | 0.290 | World recommended value | [17] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADR | absorbed dose rate [nGy/h] |
AEDE | annual (outdoor) effective dose equivalent [mSv/y] |
AGDE | annual gonadal dose equivalent [μSv/y] |
ATSDR | Agency for Toxic Substances and Disease Registry |
ELCR 10−3 | excess lifetime cancer risk (unitless) |
GRD | gamma radiation dose [μSv/h] |
IAEA | International Atomic Energy Agency |
ICRP | International Commision on Radiological Protection |
Iγ | radioactivity level index |
NORM | naturally occurring radioactive materials |
REE | rare earths elements |
Raeq | radium equivalent activity [Bq/kg] |
TENORM | technologically enhanced naturally occurring radioactive materials |
UNSCEAR | United Nations Scientific Committee on the Effects of Atomic Radiation |
References
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics, 86th ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Choppin, G.R.; Liljenzin, J.-O.; Rydberg, J. Radiochemistry and Nuclear Chemistry, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Eisenbud, M.; Gesell, T. Environmental Radioactivity: From Natural, Industrial, and Military Sources, 4th ed.; Academic Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Sheppard, S.C.; Evenden, W.G. Mobility and fate of uranium in the environment. J. Environ. Radioact. 1992, 15, 277–295. [Google Scholar]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Uranium; U.S. Department of Health and Human Services: Washington, DC, USA, 2022.
- International Atomic Energy Agency. Radiological Characterization of Shutdown Nuclear Reactors for Decommissioning Purposes; Technical Reports Series No. 389; International Atomic Energy Agency: Vienna, Austria, 2004. [Google Scholar]
- International Atomic Energy Agency. Thorium Fuel Cycle—Potential Benefits and Challenges; IAEA-TECDOC-1450; International Atomic Energy Agency: Vienna, Austria, 2005. [Google Scholar]
- Kang, J.; von Hippel, F.N. U-232 and the proliferation-resistance of U-233 in spent fuel. Sci. Glob. Secur. 2001, 9, 1–32. [Google Scholar] [CrossRef]
- Chen, J. Discussion on issues with radon in drinking water. Rad. Prot. Dosim. 2019, 185, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Al-Somali, O.; Hassan, H.J. Gross alpha/beta activity concentrations in imported bottled drinking water in Saudi Arabia. J. Radiat. Res. Appl. Sci. 2024, 17, 100922. [Google Scholar] [CrossRef]
- ISO 10704:2019(en); Water Quality—Gross Alpha and Gross Beta Activity—Test Method Using Thin Source Deposit. ISO—International Organization for Standardization: Geneva, Switzerland, 2019.
- Bahari, I.; Mohsen, N.; Abdullah, P. Radioactivity and radiological risk associated with effluent sediment containing technologically enhanced naturally occurring radioactive materials in amang (tin tailings) processing industry. J. Environ. Radioact. 2007, 95, 161–170. [Google Scholar] [CrossRef]
- Seraya, N.; Daumova, G.; Petrova, O.; Garcia-Mira, R.; Polyakova, A. Ecological Status of the Small Rivers of the East Kazakhstan Region. Sustainability 2025, 17, 6525. [Google Scholar] [CrossRef]
- Muter, O.; Gudrā, D.; Daumova, G.; Idrisheva, Z.; Rakhymberdina, M.; Tabors, G.; Dirnēna, B.; Dobkeviča, L.; Petrova, O.; Apshikur, B.; et al. Impact of Anthropogenic Activities on Microbial Community Structure in Riverbed Sediments of East Kazakhstan. Microorganisms 2024, 12, 246. [Google Scholar] [CrossRef]
- GOST 17.4.4.02-84; Nature Protection. Soils. Methods for Sampling and Preparation of Soil for Chemical, Bacteriological, Helmintological Analysis. Publisher Standardinform: Moscow, Russia, 2008. Available online: http://www.omegametall.ru/Data2/1/4294847/4294847763.pdf (accessed on 10 September 2025).
- ST RK ISO 4037-3-2015; X-Ray and Gamma-Radiation Standards for Calibrating Dosimeters and Intensity Meters and Determining Their Characteristics as a Function of Photon Energy. Part 3. Calibration of Dosimeters for Individual Dosimetry and Local Dosimetry Measurements of Their. ISO: Geneva, Switzerland, 2015. Available online: https://www.kazakhstanlaws.com/p-263488-st-rk-iso-4037-3-2015.aspx (accessed on 10 September 2025).
- UNSCEAR. Source and Effects of Ionising Radiation. Report to the General Assembly with Scientific Annexes; United Nations: New York, NY, USA, 2000. [Google Scholar]
- Beretka, J.; Mathew, P.J. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef]
- dos Santos, J.A., Jr.; Nobrega de Araújo, E.E.; Fernandez, Z.H.; dos Santos Amaral, R.; do Nascimento Santos, J.M.; Milan, M.O. Measurement of natural radioactivity and radium equivalent activity for pottery making clay samples in Paraíba and Rio Grande do Norte—Brazil. Environ. Adv. 2021, 6, 100121. [Google Scholar] [CrossRef]
- Higley, K.; Real, A.; Chambers, D. ICRP Publication 148: Radiation Weighting for Reference Animals and Plants. Ann. ICRP 2021, 50, 9–133. [Google Scholar] [CrossRef]
- UNSCEAR. Report to the General Assembly with Scientific Annexes, Annex B: Exposure of the Public and Workers from Various Sources of Radiation; United Nations: New York, NY, USA, 2010. [Google Scholar]
- UNSCEAR. Source and Effects of Ionising Radiation. Report to the General Assembly with Scientific Annexes; United Nations: New York, NY, USA, 2008. [Google Scholar]
- Bulubasa, G.; Costinel, D.; Miu, A.F.; Ene, M.R. Activity concentrations of 238U, 232Th, 226Ra, 137Cs and 40K radionuclides in honey samples from Romania. Lifetime cancer risk estimated. J. Environ. Radioact. 2021, 234, 106626. [Google Scholar] [CrossRef]
- Ahmed, R.S.; Mohammed, R.S.; Abdaljalil, R.O. The Activity Concentrations and Radium Equivalent Activity in Soil Samples Collected from the Eastern Part of Basrah Governorate in Southern Iraq. Int. J. Anal. Chem. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ogundare, F.O.; Adekoya, O.I. Gross alpha and beta radioactivity in surface soil and drinkable water around a steel processing facility. J. Radiat. Res. Appl. Sci. 2015, 8, 411–417. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th Edition, Incorporating the 1st Addendum; WHO: Geneva, Switzerland, 2017; ISBN 978-92-4-154995-0. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; WHO: Geneva, Switzerland, 2022; ISBN 978-92-4-004506-4. [Google Scholar]
- Fan, J.; McConkey, B.; Wang, H.; Janzen, H. Root distribution by depth for temperate agricultural crops. Field Crops Res. 2015, 189, 68–74. [Google Scholar] [CrossRef]
- Girault, F.; Perrier, F.; Ourcival, J.-M.; Ferry, R.; Gaudemer, Y.; Bourges, F.; Didon-Lescot, J.-F. Substratum influences uptake of radium-226 by plants. Sci. Total Environ. 2021, 766, 142655. [Google Scholar] [CrossRef]
- Gupta, C.K.; Krishnamurthy, N. Extraction Metallurgy of Rare Earths; CRC Press: Boca Raton, FL, USA, 2005; ISBN 0-415-33340-7. [Google Scholar]
- International Atomic Energy Agency (IAEA). The Environmental Behaviour of Radium: Revised Edition; Technical Reports Series no. 476; International Atomic Energy Agency: Vienna, Austria, 2014. [Google Scholar]
- Valković, V. Radioactivity in the Environment, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-0-444-64146-5. [Google Scholar]
- Kumari, A.; Panda, R.; Kumar Jha, M.; Kumar, J.R.; Lee, J.Y. Process development to recover rare earth metals from monazite mineral: A review. Miner. Eng. 2015, 79, 102–115. [Google Scholar] [CrossRef]
- Bé, M.-M.; Chisté, V.; Dulieu, C.; Mougeot, X.; Browne, E.; Chechev, V.; Kuzmenko, N.; Kondev, F.; Luca, A.; Galán, M.; et al. Monographie BIPM-5, Table of Radionuclides; Bureau International des Poids et Mesures: Sèvres, France, 2010; Volume 5. [Google Scholar]
- United States Environmental Protection Agency. Understanding Variation in Partition Coefficient, Kd, Values (Volume 1&2); United States Environmental Protection Agency: Washington, DC, USA, 1999.
- Siongers, C. Linking thorium-232 Mobility and Soil-to-Plant Transfer with Soil Characteristics. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2018. [Google Scholar] [CrossRef]
- Qin-Hong, H. Soil to plant transfer of 238U 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. J. Environ. Radioact. 2005, 82, 223–236. [Google Scholar] [CrossRef]
- Landström, O.; Sundblad, B.; Energiteknik, S. Migration of Thorium, Uranium, Radium and Cs—137 in till Soils and their Uptake in Organic Matter and Peat; Technical Report No 86-24; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 1986. [Google Scholar]
- Weaver, J.E.; Darland, R.W. Soil-Root Relationships of Certain Native Grasses in Various Soil Types. Ecol. Monogr. 1949, 19, 303–338. [Google Scholar] [CrossRef]
- Nippert, J.B.; Holdo, R.M. Challenging the maximum rooting depth paradigm ingrasslands and savannas. Funct. Ecol. 2015, 29, 739–745. [Google Scholar] [CrossRef]
- Duong, N.T.; Van Hao, D.; Van, L.B.; Duc, T.D.; Trinh, P.T.; Le Xuan, H. Natural radionuclides and assessment of radiological hazards in MuongHum, Lao Cai, Vietnam. Chemosphere 2021, 270, 128671. [Google Scholar] [CrossRef]
- Yakovlev, E.Y.; Malov, A.I.; Druzhinin, S.V.; Zykova, E.N.; Orlov, A.S. Transformation of the radionuclides composition of river sediments in the area of the exploited Lomonosov diamond deposit (NW Russia). J. Environ. Radioact. 2020, 213, 106142. [Google Scholar] [CrossRef] [PubMed]
- The Ministry of Justice of the Republic of Kazakhstan. Environmental Code of the Republic of Kazakhstan (Law No. 400-VI ZRK), 02.01.2021; The Ministry of Justice of the Republic of Kazakhstan: Astana, Kazakhstan, 2021. [Google Scholar]
- International Atomic Energy Agency. Management of Radioactive Waste from the Mining and Milling of Ores; International Atomic Energy Agency Safety Standards Series; Safety guide No. WS-G-1.2; International Atomic Energy Agency: Vienna, Austria, 2014. [Google Scholar]
- International Atomic Energy Agency. Management of Radioactive Waste from the Mining and Milling of Ores; International Atomic Energy Agency Safety Standards Series; Safety guide No. SSG-60; International Atomic Energy Agency: Vienna, Austria, 2021. [Google Scholar]
- Kamunda, C.; Mathuthu, M.; Madhuku, M. An Assessment of Radiological Hazards from Gold Mine Tailings in the Province of Gauteng in South Africa. Int. J. Environ. Res. Public Health 2016, 13, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Pandit, P.; Mangala, P.; Saini, A.; Bangotra, P.; Kumar, V.; Mehra, R.; Ghosh, D. Radiological and pollution risk assessments of terrestrial radionuclides and heavy metals in a mineralized zone of the Siwalik region (India). Chemosphere 2020, 254, 126857. [Google Scholar] [CrossRef] [PubMed]
- Gil-Pacheco, E.; Suarez-Navarro, J.A.; Sanchez-Gonzalez, S.M.; Suarez-Navarro, M.J.; Hernaiz, G.; García-Sanchez, A. A radiological index for evaluating the impact of an abandoned uranium mining area in Salamanca, Western Spain. Environ. Pollut. 2020, 258, 113825. [Google Scholar] [CrossRef]
- Rahmat, M.A.; Ismail, A.F.; Rodzi, N.D.; Aziman, E.S.; Idris, W.M.R.; Lihan, T. Assessment of natural radionuclides and heavy metals contamination to the environment: Case study of Malaysian unregulated tin-tailing processing industry. Nucl. Eng. Technol. 2022, 54, 2230–2243. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H.; Ma, Y.; Wang, J.; Su, W.; Xiao, E.; Du, J.; Xiao, T.; Zhong, Q. Geochemical distributions of natural radionuclides in surface soils and sediments impacted by lead-zinc mining activity. Ecotoxicol. Environ. Saf. 2023, 263, 115210. [Google Scholar] [CrossRef]
Radioactivity Measurements for 40–60 cm | ||||
---|---|---|---|---|
Radionuclide | Ra-226 | Th-232 | K-40 | |
Concentration in Bq/kg | Average | 129 | 738 | 549 |
Median | 102 | 598 | 549 | |
Minimum | 21 | 47 | 465 | |
Maximum | 404 | 2530 | 646 | |
Skewness | 1.79 | 1.80 | 0.09 | |
Kurtosis | 3.62 | 3.42 | −0.84 | |
Coefficient of variation | 66.8 | 77.8 | 9.22 |
The Experimental Value of Gross Alpha Water-Soluble Forms [Bq/kg] | The Experimental Value of Gross Alpha Ion-Exchangeable Forms [Bq/kg] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sampling Depth [cm] | Sampling Depth [cm] | |||||||||
Sample Code | 0–20 | 20–40 | 40–60 | 60–80 | 80–100 | 0–20 | 20–40 | 40–60 | 60–80 | 80–100 |
A-1 | 38 | 131 | 187 | 167 | 124 | 37 | 133 | 164 | 155 | 148 |
A-2 | 15 | 57 | 113 | 121 | 171 | 12 | 63 | 112 | 145 | 162 |
A-3 | 25 | 29 | 38 | 64 | 80 | 21 | 35 | 43 | 62 | 113 |
A-4 | 29 | 59 | 67 | 56 | 32 | 28 | 71 | 71 | 69 | 40 |
A-5 | 21 | 41 | 57 | 121 | 124 | 16 | 44 | 57 | 109 | 164 |
A-6 | 23 | 34 | 40 | 62 | 71 | 26 | 34 | 48 | 71 | 65 |
A-7 | 15 | 63 | 139 | 104 | 124 | 16 | 68 | 123 | 122 | 132 |
A-8 | 25 | 64 | 79 | 105 | 83 | 25 | 77 | 95 | 100 | 85 |
A-9 | 12 | 13 | 87 | 153 | 127 | 9 | 14 | 77 | 143 | 128 |
A-10 | 34 | 44 | 12 | 11 | 12 | 33 | 50 | 9 | 9 | 10 |
A-11 | 16 | 104 | 193 | 200 | 122 | 12 | 88 | 216 | 181 | 128 |
A-12 | 32 | 48 | 28 | 42 | 49 | 38 | 51 | 28 | 46 | 53 |
A-13 | 26 | 50 | 46 | 82 | 130 | 20 | 43 | 43 | 85 | 141 |
A-14 | 14 | 20 | 51 | 91 | 127 | 14 | 23 | 46 | 98 | 121 |
A-15 | 24 | 32 | 50 | 66 | 70 | 19 | 38 | 42 | 57 | 62 |
A-16 | 29 | 42 | 47 | 92 | 151 | 23 | 48 | 47 | 93 | 124 |
A-17 | 30 | 59 | 64 | 120 | 136 | 29 | 47 | 52 | 99 | 143 |
A-18 | 22 | 31 | 48 | 79 | 93 | 18 | 35 | 49 | 76 | 106 |
A-19 | 17 | 43 | 53 | 66 | 81 | 16 | 35 | 64 | 74 | 74 |
A-20 | 19 | 42 | 66 | 78 | 77 | 14 | 37 | 60 | 68 | 78 |
A-21 | 22 | 28 | 56 | 75 | 107 | 18 | 28 | 58 | 94 | 118 |
A-22 | 20 | 39 | 41 | 53 | 60 | 20 | 35 | 43 | 55 | 50 |
A-23 | 17 | 49 | 84 | 100 | 68 | 15 | 44 | 83 | 86 | 87 |
A-24 | 17 | 27 | 48 | 51 | 58 | 13 | 31 | 41 | 53 | 68 |
A-25 | 17 | 24 | 21 | 20 | 19 | 16 | 20 | 21 | 17 | 17 |
A-26 | 17 | 25 | 31 | 55 | 91 | 18 | 28 | 28 | 58 | 107 |
A-27 | 14 | 18 | 31 | 26 | 17 | 8 | 17 | 30 | 19 | 19 |
The Experimental Value of Gross Beta Water-Soluble Forms [Bq/kg] | The Experimental Value of Gross Beta Ion-Exchangeable Forms [Bq/kg] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sampling Depth [cm] | Sampling Depth [cm] | |||||||||
Sample Code | 0–20 | 20–40 | 40–60 | 60–80 | 80–100 | 0–20 | 20–40 | 40–60 | 60–80 | 80–100 |
A-1 | 16 | 57 | 87 | 70 | 47 | 16 | 56 | 74 | 60 | 54 |
A-2 | 10 | 29 | 42 | 50 | 57 | 9 | 28 | 41 | 45 | 51 |
A-3 | 9 | 15 | 15 | 27 | 43 | 10 | 15 | 17 | 34 | 45 |
A-4 | 11 | 24 | 32 | 22 | 18 | 12 | 24 | 28 | 23 | 16 |
A-5 | 13 | 18 | 25 | 52 | 57 | 11 | 14 | 23 | 53 | 51 |
A-6 | 14 | 14 | 18 | 30 | 26 | 13 | 13 | 20 | 34 | 32 |
A-7 | 10 | 21 | 49 | 44 | 43 | 10 | 26 | 43 | 42 | 52 |
A-8 | 15 | 27 | 29 | 36 | 37 | 14 | 25 | 37 | 33 | 38 |
A-9 | 7 | 8 | 35 | 55 | 53 | 7 | 7 | 35 | 47 | 60 |
A-10 | 11 | 19 | 6 | 6 | 9 | 10 | 20 | 7 | 7 | 8 |
A-11 | 8 | 38 | 77 | 69 | 55 | 8 | 32 | 83 | 73 | 56 |
A-12 | 19 | 23 | 13 | 20 | 25 | 19 | 22 | 14 | 16 | 24 |
A-13 | 12 | 19 | 19 | 35 | 41 | 11 | 15 | 15 | 32 | 47 |
A-14 | 7 | 10 | 17 | 27 | 50 | 9 | 10 | 20 | 27 | 42 |
A-15 | 10 | 16 | 22 | 19 | 21 | 10 | 17 | 21 | 24 | 24 |
A-16 | 12 | 17 | 19 | 42 | 55 | 12 | 18 | 20 | 34 | 53 |
A-17 | 14 | 22 | 31 | 49 | 63 | 16 | 20 | 27 | 41 | 64 |
A-18 | 10 | 19 | 15 | 25 | 45 | 11 | 18 | 16 | 30 | 39 |
A-19 | 10 | 18 | 26 | 34 | 22 | 8 | 17 | 25 | 32 | 29 |
A-20 | 8 | 15 | 29 | 29 | 26 | 8 | 16 | 27 | 32 | 30 |
A-21 | 7 | 16 | 18 | 37 | 51 | 8 | 17 | 17 | 37 | 49 |
A-22 | 11 | 14 | 16 | 22 | 26 | 11 | 13 | 18 | 20 | 28 |
A-23 | 8 | 21 | 33 | 29 | 31 | 8 | 19 | 40 | 32 | 27 |
A-24 | 8 | 14 | 24 | 19 | 19 | 7 | 13 | 23 | 24 | 23 |
A-25 | 9 | 9 | 12 | 9 | 11 | 9 | 9 | 12 | 9 | 9 |
A-26 | 9 | 12 | 16 | 23 | 44 | 8 | 10 | 15 | 23 | 44 |
A-27 | 6 | 11 | 11 | 12 | 12 | 8 | 9 | 14 | 12 | 19 |
Sample Code | Radiological Hazard Indices | |||||
---|---|---|---|---|---|---|
Raeq [Bq/kg] | ADR [nGy/h] | AEDE [mSv/y] | ELCR [10−3] | AGDE [μSv/y] | Iγ | |
1 | 766 | 332 | 0.41 | 1.63 | 2 306 | 5.41 |
2 | 269 | 120 | 0.15 | 0.59 | 845 | 1.95 |
3 | 376 | 166 | 0.20 | 0.81 | 1158 | 2.69 |
4 | 471 | 206 | 0.25 | 1.01 | 1430 | 3.34 |
5 | 366 | 162 | 0.20 | 0.79 | 1131 | 2.62 |
6 | 394 | 173 | 0.21 | 0.85 | 1203 | 2.80 |
7 | 290 | 128 | 0.16 | 0.63 | 898 | 2.08 |
8 | 470 | 205 | 0.25 | 1.00 | 1422 | 3.33 |
9 | 141 | 65 | 0.08 | 0.32 | 459 | 1.04 |
10 | 449 | 197 | 0.24 | 0.96 | 1369 | 3.19 |
11 | 215 | 97 | 0.12 | 0.47 | 678 | 1.56 |
12 | 616 | 268 | 0.33 | 1.31 | 1857 | 4.35 |
13 | 468 | 205 | 0.25 | 1.00 | 1426 | 3.33 |
14 | 201 | 91 | 0.11 | 0.44 | 638 | 1.46 |
15 | 376 | 166 | 0.20 | 0.81 | 1161 | 2.69 |
16 | 509 | 223 | 0.27 | 1.09 | 1550 | 3.62 |
17 | 482 | 211 | 0.26 | 1.03 | 1467 | 3.43 |
18 | 410 | 180 | 0.22 | 0.88 | 1256 | 2.92 |
19 | 255 | 114 | 0.14 | 0.56 | 803 | 1.85 |
20 | 232 | 104 | 0.13 | 0.51 | 732 | 1.68 |
21 | 299 | 133 | 0.16 | 0.65 | 931 | 2.15 |
22 | 398 | 175 | 0.21 | 0.86 | 1222 | 2.84 |
23 | 235 | 106 | 0.13 | 0.52 | 744 | 1.71 |
24 | 233 | 104 | 0.13 | 0.51 | 728 | 1.68 |
25 | 246 | 111 | 0.14 | 0.54 | 777 | 1.79 |
26 | 269 | 120 | 0.15 | 0.59 | 837 | 1.93 |
27 | 158 | 72 | 0.09 | 0.35 | 505 | 1.15 |
28 | 148 | 68 | 0.08 | 0.33 | 483 | 1.09 |
Average | 348 | 154 | 0.19 | 0.75 | 1072 | 2.49 |
Std. Dev | 145 | 62 | 0.08 | 0.31 | 436 | 1.01 |
Min. | 141 | 65 | 0.08 | 0.32 | 459 | 1.04 |
Max. | 766 | 332 | 0.41 | 1.63 | 2 306 | 5.41 |
Sample Code | Radiological Hazard Indices | |||||
---|---|---|---|---|---|---|
Raeq [Bq/kg] | ADR [nGy/h] | AEDE [mSv/y] | ELCR [10−3] | AGDE [μSv/y] | Iγ | |
1 | 4064 | 1737 | 2.13 | 8.50 | 11,994 | 28.4 |
2 | 2444 | 1046 | 1.28 | 5.12 | 7228 | 17.1 |
3 | 658 | 285 | 0.35 | 1.40 | 1978 | 4.64 |
4 | 1412 | 607 | 0.74 | 2.97 | 4201 | 9.90 |
5 | 1116 | 482 | 0.59 | 2.36 | 3336 | 7.84 |
6 | 780 | 339 | 0.42 | 1.66 | 2347 | 5.50 |
7 | 2273 | 975 | 1.20 | 4.77 | 6739 | 15.9 |
8 | 1759 | 756 | 0.93 | 3.70 | 5226 | 12.3 |
9 | 1526 | 657 | 0.81 | 3.22 | 4548 | 10.7 |
10 | 127 | 59 | 0.07 | 0.29 | 421 | 0.95 |
11 | 3532 | 1511 | 1.85 | 7.39 | 10,436 | 24.7 |
12 | 499 | 218 | 0.27 | 1.07 | 1513 | 3.53 |
13 | 723 | 313 | 0.38 | 1.53 | 2169 | 5.09 |
14 | 822 | 356 | 0.44 | 1.74 | 2461 | 5.77 |
15 | 902 | 390 | 0.48 | 1.91 | 2702 | 6.35 |
16 | 1097 | 473 | 0.58 | 2.32 | 3277 | 7.70 |
17 | 1319 | 568 | 0.70 | 2.78 | 3934 | 9.26 |
18 | 825 | 357 | 0.44 | 1.75 | 2471 | 5.80 |
19 | 1065 | 460 | 0.56 | 2.25 | 3183 | 7.47 |
20 | 1405 | 603 | 0.74 | 2.95 | 4174 | 9.85 |
21 | 1065 | 459 | 0.56 | 2.25 | 3181 | 7.49 |
22 | 771 | 335 | 0.41 | 1.64 | 2320 | 5.44 |
23 | 1469 | 631 | 0.77 | 3.09 | 4364 | 10.3 |
24 | 957 | 413 | 0.51 | 2.02 | 2864 | 6.74 |
25 | 312 | 138 | 0.17 | 0.67 | 962 | 2.23 |
26 | 506 | 221 | 0.27 | 1.08 | 1539 | 3.59 |
27 | 550 | 240 | 0.29 | 1.17 | 1665 | 3.89 |
28 | 373 | 164 | 0.20 | 0.80 | 1147 | 2.67 |
Average | 1227 | 528 | 0.65 | 2.59 | 3657 | 8.61 |
Std. Dev | 892 | 380 | 0.47 | 1.86 | 2624 | 6.22 |
Min. | 127 | 59 | 0.07 | 0.29 | 421 | 0.95 |
Max. | 4064 | 1737 | 2.13 | 8.50 | 11,994 | 28.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idrisheva, Z.; Ostolska, I.; Skwarek, E.; Daumova, G.; Wiśniewska, M.; Toktaganov, T.; Kozhakhmetov, Y. Evaluation of Long-Term Environmental Impact and Radiological Risks at a Former Thorium and Rare Earth Site in North-Eastern Kazakhstan. Sustainability 2025, 17, 8569. https://doi.org/10.3390/su17198569
Idrisheva Z, Ostolska I, Skwarek E, Daumova G, Wiśniewska M, Toktaganov T, Kozhakhmetov Y. Evaluation of Long-Term Environmental Impact and Radiological Risks at a Former Thorium and Rare Earth Site in North-Eastern Kazakhstan. Sustainability. 2025; 17(19):8569. https://doi.org/10.3390/su17198569
Chicago/Turabian StyleIdrisheva, Zhanat, Iwona Ostolska, Ewa Skwarek, Gulzhan Daumova, Małgorzata Wiśniewska, Togzhan Toktaganov, and Yernat Kozhakhmetov. 2025. "Evaluation of Long-Term Environmental Impact and Radiological Risks at a Former Thorium and Rare Earth Site in North-Eastern Kazakhstan" Sustainability 17, no. 19: 8569. https://doi.org/10.3390/su17198569
APA StyleIdrisheva, Z., Ostolska, I., Skwarek, E., Daumova, G., Wiśniewska, M., Toktaganov, T., & Kozhakhmetov, Y. (2025). Evaluation of Long-Term Environmental Impact and Radiological Risks at a Former Thorium and Rare Earth Site in North-Eastern Kazakhstan. Sustainability, 17(19), 8569. https://doi.org/10.3390/su17198569